def __init__(self, path, base_size, crop_size, split, overfit): self.env = lmdb.open(os.path.join(path, split + ".db"), subdir=False, readonly=True, lock=False, readahead=False, meminit=False) with self.env.begin(write=False) as txn: self.image_paths = pickle.loads(txn.get(b'__keys__')) self.path = path self.split = split self.crop_size = crop_size self.base_size = base_size self.overfit = overfit if crop_size == -1: self.scalecrop = tr.ScaleWithPadding(base_size=self.base_size) else: self.scalecrop = tr.FixScaleCrop(crop_size=self.crop_size) if overfit: self.image_paths = self.image_paths[:1] if len(self.image_paths) == 0: raise Exception("No images found in dataset directory")
def transform_val(self, sample): composed_transforms = transforms.Compose([ tr.FixScaleCrop(crop_size=self.args.crop_size), tr.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)), tr.ToTensor()]) return composed_transforms(sample)
def transform_val(self, sample): # as appearing in tranform_tr, transform_val also holds the same principle composed_transforms = transforms.Compose([ tr.FixScaleCrop(crop_size=self.args.crop_size), # fixscalecrop, we have to calcualte base_size and crop_size based on argparse tr.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)), tr.ToTensor()]) return composed_transforms(sample) # return composed_transform
def transform_val(self, sample): composed_transforms = transforms.Compose([ tr.FixScaleCrop(crop_size=self.crop_size), tr.Darken(self.cfg), tr.Normalize(mean=self.data_mean, std=self.data_std), tr.ToTensor() ]) return composed_transforms(sample)
def transform_val(self, sample): composed_transforms = transforms.Compose([ tr.FixScaleCrop(crop_size=self.crop_size), tr.Normalize(mean=[0.4911], std=[0.1658]), tr.ToTensor() ]) transformed = composed_transforms(sample) transformed['image'] = transformed['image'].unsqueeze(0) return transformed
def transform_tr(self, sample): composed_transforms = transforms.Compose([ #将各种transformation组合在一起 # tr.RandomHorizontalFlip(), # tr.RandomScaleCrop(base_size=self.args.base_size, crop_size=self.args.crop_size, fill=255), # tr.RandomGaussianBlur(), tr.FixScaleCrop(crop_size=self.args.crop_size), tr.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)), tr.ToTensor() ]) return composed_transforms(sample)
def transform_tr_part1_1(self, sample): if self.args.use_small: composed_transforms = transforms.Compose( [tr.FixScaleCrop(crop_size=self.args.crop_size)]) else: composed_transforms = transforms.Compose([ tr.RandomHorizontalFlip(), tr.RandomScaleCrop(base_size=self.args.base_size, crop_size=self.args.crop_size) ]) # Zhiwei return composed_transforms(sample)
def transform_val(self, sample): """Image transformations for validation""" targs = self.transform method = targs["method"] pars = targs["parameters"] composed_transforms = transforms.Compose([ tr.FixedResize(size=pars["outSize"]), tr.FixScaleCrop(cropSize=pars["outSize"]), tr.Normalize(mean=pars["mean"], std=(pars["std"])), tr.ToTensor()]) return composed_transforms(sample)
def transform_train(self, sample): composed_transforms = transforms.Compose([ tr.FixScaleCrop(crop_size=self.crop_size), tr.RandomHorizontalFlip(), tr.RandomGaussianBlur(), tr.Normalize(mean=[0.4911], std=[0.1658]), tr.ToTensor() ]) transformed = composed_transforms(sample) transformed['image'] = transformed['image'].unsqueeze(0) return transformed
def transform_val(self, sample): composed_transforms = transforms.Compose([ tr.FixScaleCrop(crop_size=self.args.crop_size), tr.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)), tr.ToTensor() ]) transformed = composed_transforms(sample) transformed['imgId'] = sample['imgId'] transformed['resolution'] = sample['image'].size return transformed
def transform_val(self, sample): """Transformations for images sample: {image:img, annotation:ann} Note: the mean and std is from imagenet """ composed_transforms = transforms.Compose([ tr.FixScaleCrop(crop_size=self.args.crop_size, fill=0), tr.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)), tr.ToTensor() ]) return composed_transforms(sample)
def transform_tr(self, sample): #print(sample) composed_transforms = transforms.Compose([ tr.RandomHorizontalFlip(), tr.FixScaleCrop(crop_size=self.args.crop_size), #tr.RandomScaleCrop(base_size=self.args.base_size, crop_size=self.args.crop_size), tr.RandomGaussianBlur(), tr.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)), tr.ToTensor(), tr.Lablize(high_confidence=self.args.high_confidence) ]) return composed_transforms(sample)
def transform_val_part1(self, sample): if self.args.enable_test and self.args.enable_test_full: return sample else: if self.args.enable_adjust_val: composed_transforms = transforms.Compose([ tr.AutoAdjustSize(factor=self.args.adjust_val_factor, fill=254) ]) else: composed_transforms = transforms.Compose( [tr.FixScaleCrop(crop_size=self.args.crop_size)]) return composed_transforms(sample)
def transform_ts(self, sample): """ composed transformers for testing dataset :param sample: {'image': image, 'label': label} :return: """ composed_transforms = transforms.Compose([ ct.FixScaleCrop(crop_size=self.crop_size), ct.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)), ct.ToTensor() ]) return composed_transforms(sample)
def __init__(self, env, paths, crop_size, include_labels=False): self.env = env self.paths = paths self.crop_size = crop_size self.include_labels = include_labels self.base_size = 512 if crop_size == -1: self.scalecrop = tr.ScaleWithPadding(base_size=self.base_size) self.scalecrop_image_only = tr.ScaleWithPaddingImageOnly( base_size=self.base_size) else: self.scalecrop = tr.FixScaleCrop(crop_size=self.crop_size) self.scalecrop_image_only = tr.FixScaleCropImageOnly( crop_size=self.crop_size)