def train_transform(self, rgb, depth):
        s = self.getFocalScale()

        if (self.augArgs.varFocus):  #Variable focal length simulation
            depth_np = depth
        else:
            depth_np = depth / s  #Correct for focal length

        if (self.augArgs.varScale):  #Variable global scale simulation
            scale = self.getDepthGroup()
            depth_np = depth_np * scale

        angle = np.random.uniform(-5.0, 5.0)  # random rotation degrees
        do_flip = np.random.uniform(0.0, 1.0) < 0.5  # random horizontal flip

        # perform 1st step of data augmentation
        transform = transforms.Compose([
            transforms.Resize(
                250.0 / iheight
            ),  # this is for computational efficiency, since rotation can be slow
            transforms.Rotate(angle),
            transforms.Resize(s),
            transforms.CenterCrop(self.output_size),
            transforms.HorizontalFlip(do_flip)
        ])
        rgb_np = transform(rgb)
        rgb_np = self.color_jitter(rgb_np)  # random color jittering
        rgb_np = np.asfarray(rgb_np, dtype='float') / 255
        depth_np = transform(depth_np)

        return rgb_np, depth_np
    def train_transform(self, rgb, depth):
        s = np.random.uniform(1.0, 1.5)  # random scaling
        random_size = (int(s * 224), int(s * 224))
        depth_np = depth / s
        angle = np.random.uniform(-5.0, 5.0)  # random rotation degrees
        do_flip = np.random.uniform(0.0, 1.0) < 0.5  # random horizontal flip

        # perform 1st step of data augmentation
        # transform = torchvision.transforms.Compose([
        #     torchvision.transforms.Resize(self.output_size), # this is for computational efficiency, since rotation can be slow
        #    torchvision.transforms.RandomRotation(angle),
        #    torchvision.transforms.Resize(random_size),
        #    torchvision.transforms.CenterCrop(self.output_size),
        #    torchvision.transforms.RandomHorizontalFlip(do_flip)
        #])
        transform2 = transforms.Compose([
            transforms.Resize(
                250.0 / iheight
            ),  # this is for computational efficiency, since rotation can be slow
            transforms.Rotate(angle),
            transforms.Resize(s),
            transforms.CenterCrop(self.output_size),
            transforms.HorizontalFlip(do_flip)
        ])
        rgb_np = transform2(rgb)
        #rgb_n = Image.fromarray(np.uint8(rgb_np * 255))
        #rgb_np = self.color_jitter(rgb_n) # random color jittering
        rgb_np = np.asfarray(rgb_np, dtype='float') / 255
        depth_np = transform2(depth_np)
        #depth_np = np.asfarray(depth_np, dtype='float') / 255

        return rgb_np, depth_np
Example #3
0
    def train_transform(self, rgb, depth, rgb_near):
        s = np.random.uniform(1.0, 1.5)  # random scaling
        depth_np = depth / s
        angle = np.random.uniform(-5.0, 5.0)  # random rotation degrees
        do_flip = np.random.uniform(0.0, 1.0) < 0.5  # random horizontal flip
        # perform 1st step of data augmentation
        transform = transforms.Compose([
            transforms.Resize(
                250.0 / iheight
            ),  # this is for computational efficiency, since rotation can be slow
            transforms.Rotate(angle),
            transforms.Resize(s),
            transforms.CenterCrop(self.output_size),
            transforms.HorizontalFlip(do_flip)
        ])
        rgb_np = transform(rgb)
        rgb_np = self.color_jitter(rgb_np)  # random color jittering
        rgb_np = np.asfarray(rgb_np, dtype='float') / 255
        rgb_near_np = None
        if rgb_near is not None:
            rgb_near_np = transform(rgb_near)
            rgb_near_np = np.asfarray(rgb_near_np, dtype='float') / 255
        depth_np = transform(depth_np)

        self.K = TransfromIntrinsics(self.K, (250.0 / iheight) * s,
                                     self.output_size)
        return rgb_np, depth_np, rgb_near_np
    def train_transform(self, im, gt):
        im = np.array(im).astype(np.float32)
        gt = np.array(gt).astype(np.float32)

        s = np.random.uniform(1.0, 1.5)  # random scaling
        angle = np.random.uniform(-5.0, 5.0)  # random rotation degrees
        do_flip = np.random.uniform(0.0, 1.0) < 0.5  # random horizontal flip
        color_jitter = my_transforms.ColorJitter(0.4, 0.4, 0.4)

        transform = my_transforms.Compose([
            my_transforms.Crop(130, 10, 240, 1200),
            my_transforms.Resize(460 / 240, interpolation='bilinear'),
            my_transforms.Rotate(angle),
            my_transforms.Resize(s),
            my_transforms.CenterCrop(self.size),
            my_transforms.HorizontalFlip(do_flip)
        ])

        im_ = transform(im)
        im_ = color_jitter(im_)

        gt_ = transform(gt)

        im_ = np.array(im_).astype(np.float32)
        gt_ = np.array(gt_).astype(np.float32)

        im_ /= 255.0
        gt_ /= 100.0 * s
        im_ = to_tensor(im_)
        gt_ = to_tensor(gt_)

        gt_ = gt_.unsqueeze(0)

        return im_, gt_
Example #5
0
    def train_transform(self, rgb, depth):
        scale = np.random.uniform(low=1, high=1.5)
        depth = depth / scale

        angle = np.random.uniform(-5.0, 5.0)
        should_flip = np.random.uniform(0.0, 1.0) < 0.5

        h_offset = int((768 - 228) * np.random.uniform(0.0, 1.0))
        v_offset = int((1024 - 304) * np.random.uniform(0.0, 1.0))

        base_transform = transforms.Compose([
            transforms.Resize(250 / iheight),
            transforms.Rotate(angle),
            transforms.Resize(scale),
            transforms.CenterCrop(self.output_size),
            transforms.HorizontalFlip(should_flip),
        ])

        rgb = base_transform(rgb)
        rgb = self.color_jitter(rgb)
        rgb = rgb / 255.0

        depth = base_transform(depth)

        return (rgb, depth)
    def val_transform(self, rgb, depth):
        s = self.getFocalScale()

        if (self.augArgs.varScale):  #Variable global scale simulation
            scale = self.getDepthGroup()
            depth_np = depth * scale
        else:
            depth_np = depth

        if (self.augArgs.varFocus):
            transform = transforms.Compose([
                transforms.Resize(240.0 / iheight),
                transforms.Resize(
                    s
                ),  #Resize both images without correcting the depth values
                transforms.CenterCrop(self.output_size),
            ])
        else:
            transform = transforms.Compose([
                transforms.Resize(240.0 / iheight),
                transforms.CenterCrop(self.output_size),
            ])

        rgb_np = transform(rgb)
        rgb_np = np.asfarray(rgb_np, dtype='float') / 255
        depth_np = transform(depth_np)

        return rgb_np, depth_np
Example #7
0
    def val_transform(self, rgb, depth):
        depth_np = depth
        transform = transforms.Compose([
            transforms.Resize(250.0 / iheight),
            transforms.CenterCrop((228, 304)),
            transforms.Resize(self.output_size),
        ])
        rgb_np = transform(rgb)
        rgb_np = np.asfarray(rgb_np, dtype='float') / 255
        depth_np = transform(depth_np)

        return rgb_np, depth_np
Example #8
0
    def train_transform(self, rgb, depth):
        # for create fake underwater images
        rgb = uw_style(rgb, depth)
        rgb /= rgb.max() / 255
        rgb = rgb.astype(np.uint8)

        s = np.random.uniform(1.0, 1.5)  # random scaling
        depth_np = depth / s
        angle = np.random.uniform(-5.0, 5.0)  # random rotation degrees
        do_flip = np.random.uniform(0.0, 1.0) < 0.5  # random horizontal flip

        # perform 1st step of data augmentation
        transform = transforms.Compose([
            # transforms.Rotate(angle),
            # transforms.Resize(s),
            # transforms.CenterCrop(self.output_size),
            transforms.HorizontalFlip(do_flip),
            transforms.Resize(size=self.output_size)
        ])
        rgb_np = transform(rgb)
        rgb_np = self.color_jitter(rgb_np)  # random color jittering
        rgb_np = np.asfarray(rgb_np, dtype='float') / 255
        depth_np = transform(depth_np)

        return rgb_np, depth_np
    def train_transform(self, rgb, depth):
        s = np.random.uniform(1.0, 1.5)  # random scaling
        depth_np = depth  #/ s
        angle = np.random.uniform(-5.0, 5.0)  # random rotation degrees
        do_flip = np.random.uniform(0.0, 1.0) < 0.5  # random horizontal flip

        # perform 1st step of data augmentation
        transform = transforms.Compose([
            #transforms.Resize(240.0 / iheight), # this is for computational efficiency, since rotation can be slow
            #transforms.Rotate(angle),
            #transforms.Resize(s),
            #transforms.CenterCrop(self.output_size),
            #transforms.HorizontalFlip(do_flip)
            transforms.Resize(self.output_size)
        ])

        rgb_np = transform(rgb)
        #rgb_np = self.color_jitter(rgb_np) # random color jittering
        rgb_np = np.asfarray(rgb_np, dtype='float') / 255

        depth_np = transform(depth_np)
        depth_np = np.asfarray(depth_np, dtype='float')

        if self.depth_16:
            depth_np = depth_np / self.depth_16_max
        else:
            depth_np = depth_np / 255

        return rgb_np, depth_np
    def val_transform(self, rgb, depth):
        s = self.getFocalScale()

        depth = np.asfarray(
            depth, dtype='float32'
        )  #This used to be the last step, not sure if it goes here?
        if (self.augArgs.varScale):  #Variable global scale simulation
            scale = self.getDepthGroup()
            depth_np = depth * scale
        else:
            depth_np = depth

        if (self.augArgs.varFocus):
            transform = transforms.Compose([
                transforms.Crop(130, 10, 240, 1200),
                transforms.Resize(
                    s
                ),  #Resize both images without correcting the depth values
                transforms.CenterCrop(self.output_size),
            ])
        else:
            transform = transforms.Compose([
                transforms.Crop(130, 10, 240, 1200),
                transforms.CenterCrop(self.output_size),
            ])

        rgb_np = transform(rgb)
        rgb_np = np.asfarray(rgb_np, dtype='float') / 255
        depth_np = transform(depth_np)
        return rgb_np, depth_np
Example #11
0
    def train_transform_label(self, rgb, depth, label):
        s = np.random.uniform(1.0, 1.5)  # random scaling
        depth_np = depth  # / s
        angle = np.random.uniform(-5.0, 5.0)  # random rotation degrees
        do_flip = np.random.uniform(0.0, 1.0) < 0.5  # random horizontal flip
        shift_x = np.random.uniform(-50.0, 50.0)

        # perform 1st step of data augmentation
        transform = transforms.Compose([
            # transforms.Translate(shift_x, 0.0),
            transforms.Resize(
                150.0 / iheight
            ),  # this is for computational efficiency, since rotation can be slow
            # transforms.Rotate(angle),
            # transforms.Resize(s),
            # transforms.CenterCrop(self.output_size),
            transforms.HorizontalFlip(do_flip)
        ])
        label_transform = transforms.Compose([
            # transforms.Translate(shift_x / 2.0, 0.0),
            # transforms.CenterCrop(self.output_size),
            transforms.HorizontalFlip(do_flip)
        ])
        rgb_np = transform(rgb)
        rgb_np = self.color_jitter(rgb_np)  # random color jittering
        rgb_np = np.asfarray(rgb_np, dtype='float') / 255
        depth_np = transform(depth_np)
        label_np = label_transform(label)

        return rgb_np, depth_np, label_np
Example #12
0
    def val_transform(self, rgb, depth):
        """
        [Reference]
        https://github.com/fangchangma/sparse-to-dense.pytorch/blob/master/dataloaders/nyu_dataloader.py

        Args:
            rgb (np.array): RGB image (shape=[H,W,3])
            depth (np.array): Depth image (shape=[H,W])

        Returns:
            torch.Tensor: Tranformed RGB image
            torch.Tensor: Transformed Depth image
            np.array: Transformed RGB image without color jitter (for 2D mesh creation)
        """
        transform = transforms.Compose([
            transforms.Resize(240.0 / RAW_HEIGHT),
            transforms.CenterCrop(self.img_size),
        ])

        # Apply this transform to rgb/depth
        rgb_np_orig = transform(rgb)
        rgb_np_for_edge = np.asfarray(rgb_np_orig)  # Used for mesh creation
        rgb_np = np.asfarray(rgb_np_orig) / 255
        depth_np = transform(depth)

        return rgb_np, depth_np, rgb_np_for_edge
    def train_transform(self, rgb, depth):
        #s = np.random.uniform(1.0, 1.5)  # random scaling
        #depth_np = depth / s
        s = self.getFocalScale()

        if (self.augArgs.varFocus):  #Variable focal length simulation
            depth_np = depth
        else:
            depth_np = depth / s  #Correct for focal length

        if (self.augArgs.varScale):  #Variable global scale simulation
            scale = self.getDepthGroup()
            depth_np = depth_np * scale

        angle = np.random.uniform(-5.0, 5.0)  # random rotation degrees
        do_flip = np.random.uniform(0.0, 1.0) < 0.5  # random horizontal flip

        # perform 1st step of data augmentation
        transform = transforms.Compose([
            transforms.Crop(130, 10, 240, 1200),
            transforms.Rotate(angle),
            transforms.Resize(s),
            transforms.CenterCrop(self.output_size),
            transforms.HorizontalFlip(do_flip)
        ])
        rgb_np = transform(rgb)
        rgb_np = self.color_jitter(rgb_np)  # random color jittering
        rgb_np = np.asfarray(rgb_np, dtype='float') / 255
        # Scipy affine_transform produced RuntimeError when the depth map was
        # given as a 'numpy.ndarray'
        depth_np = np.asfarray(depth_np, dtype='float32')
        depth_np = transform(depth_np)

        return rgb_np, depth_np
Example #14
0
    def val_transform(self, rgb):
        transform = transforms.Compose([
            transforms.Resize(240.0 / iheight),
            transforms.CenterCrop(self.output_size),
        ])
        rgb_np = transform(rgb)
        rgb_np = np.asfarray(rgb_np, dtype='float') / 255

        return rgb_np
Example #15
0
def image_transform(rgb, depth):
    depth_frame_converted = np.asfarray(depth.clip(0, 6000),
                                        dtype='float') / 1000
    depth_array = depth_frame_converted.reshape((424, 512),
                                                order='C')

    rgb_transform = transforms.Compose([
        transforms.Resize([240, 426]),
        transforms.CenterCrop((228, 304)),
    ])
    depth_transform = transforms.Compose([
        transforms.Resize([240, 320]),
        transforms.CenterCrop((228, 304)),
    ])
    rgb_frame = rgb_transform(rgb)
    rgb_np = np.asfarray(rgb_frame, dtype='float') / 255
    depth_np = depth_transform(depth_array)

    return rgb_np, depth_np
    def seq_transform(self, attrib_list, is_validation):

        iheight = attrib_list['gt_depth'].shape[0]
        iwidth = attrib_list['gt_depth'].shape[1]

        transform = transforms.Compose([
            transforms.Resize(
                240.0 / iheight),  # this is for computational efficiency,
            transforms.CenterCrop(self.output_size)
        ])

        attrib_np = dict()
        network_max_range = 10.0  # 10 is arbitrary. the network only converge in a especific range
        if 'scale' in attrib_list and attrib_list['scale'] > 0:
            scale = 1.0 / attrib_list['scale']
            attrib_np['scale'] = attrib_list['scale']
        else:
            if 'fd' in attrib_list:
                minmax_image = transform(attrib_list['fd'])
                max_depth = max(minmax_image.max(), 1.0)
            if 'kor' in attrib_list:
                minmax_image = transform(attrib_list['kor'])
                max_depth = max(minmax_image.max(), 1.0)
            else:
                max_depth = 50

            scale = network_max_range / max_depth
            attrib_np['scale'] = 1.0 / scale

        for key, value in attrib_list.items():
            if key not in Modality.no_transform:
                attrib_np[key] = transform(value)
            else:
                attrib_np[key] = value
            if key in Modality.need_divider:
                attrib_np[key] = scale * attrib_np[key]
            elif key in Modality.image_size_weight_names:
                attrib_np[key] = attrib_np[key] / (
                    iwidth * 1.5)  # 1.5 about sqrt(2)- square's diagonal

        if 'rgb' in attrib_np:
            if not is_validation:
                attrib_np['rgb'] = self.color_jitter(
                    attrib_np['rgb'])  # random color jittering
            attrib_np['rgb'] = (np.asfarray(attrib_np['rgb'], dtype='float') /
                                255).transpose(
                                    (2, 0,
                                     1))  # all channels need to have C x H x W

        if 'grey' in attrib_np:
            attrib_np['grey'] = np.expand_dims(
                np.asfarray(attrib_np['grey'], dtype='float') / 255, axis=0)

        return attrib_np
Example #17
0
    def val_transform(self, rgb, depth, random_seed):
        np.random.seed(random_seed)

        depth_np = depth
        transform = transforms.Compose([
            transforms.Resize(240.0 / iheight),
            transforms.CenterCrop(self.output_size),
        ])
        rgb_np = transform(rgb)
        rgb_np = np.asfarray(rgb_np, dtype='float') / 255
        depth_np = transform(depth_np)

        return rgb_np, depth_np
Example #18
0
    def val_transform_label(self, rgb, depth, label):
        depth_np = depth
        transform = transforms.Compose([
            transforms.Resize(150.0 / iheight),
            # transforms.CenterCrop(self.output_size),
        ])
        # label_transform = transforms.CenterCrop(self.output_size),

        rgb_np = transform(rgb)
        rgb_np = np.asfarray(rgb_np, dtype='float') / 255
        depth_np = transform(depth_np)
        label_np = label
        return rgb_np, depth_np, label_np
    def val_transform(self, rgb, depth):
        depth_np = depth
        transform = transforms.Compose([
            transforms.Crop(0, 20, 750, 2000),
            transforms.Resize(500 / 750),
            transforms.CenterCrop(self.output_size),
        ])
        rgb_np = transform(rgb)
        rgb_np = np.asfarray(rgb_np, dtype='float') / 255
        depth_np = np.asfarray(depth_np, dtype='float32')
        depth_np = transform(depth_np)

        return rgb_np, depth_np
Example #20
0
    def train_transform(self, rgb, depth):
        """
        [Reference]
        https://github.com/fangchangma/sparse-to-dense.pytorch/blob/master/dataloaders/nyu_dataloader.py

        Args:
            rgb (np.array): RGB image (shape=[H,W,3])
            depth (np.array): Depth image (shape=[H,W])

        Returns:
            torch.Tensor: Tranformed RGB image
            torch.Tensor: Transformed Depth image
            np.array: Transformed RGB image without color jitter (for 2D mesh creation)
        """
        # Parameters for each augmentation
        s = np.random.uniform(1.0, 1.5)  # random scaling
        depth_np = depth / s
        angle = np.random.uniform(-5.0, 5.0)  # random rotation degrees
        do_flip = np.random.uniform(0.0, 1.0) < 0.5  # random horizontal flip

        # Perform 1st step of data augmentation
        transform = transforms.Compose([
            transforms.Resize(250.0 / RAW_HEIGHT),
            transforms.Rotate(angle),
            transforms.Resize(s),
            transforms.CenterCrop(self.img_size),
            transforms.HorizontalFlip(do_flip)
        ])

        # Apply this transform to rgb/depth
        rgb_np_orig = transform(rgb)
        rgb_np_for_edge = np.asfarray(
            rgb_np_orig)  # Used for canny edge detection
        rgb_np = color_jitter(rgb_np_orig)  # random color jittering
        rgb_np = np.asfarray(rgb_np) / 255
        depth_np = transform(depth_np)

        return rgb_np, depth_np, rgb_np_for_edge
Example #21
0
    def val_transform(self, rgb, depth):
        depth_np = depth
        transform = transforms.Compose([
            #transform.Resize(250.0 / iheight),
            transforms.Crop(130, 10, 240, 1200),
            transforms.CenterCrop(self.output_size),
            transforms.Resize(self.output_size),
        ])
        rgb_np = transform(rgb)
        rgb_np = np.asfarray(rgb_np, dtype='float') / 255
        depth_np = np.asfarray(depth_np, dtype='float32')
        depth_np = transform(depth_np)

        return rgb_np, depth_np
    def val_transform(self, rgb, depth):
        depth_np = depth
        transform = transforms.Compose([
            transforms.Resize(240.0 / iheight),
            transforms.CenterCrop(self.output_size),
        ])
        rgb_np = transform(rgb)
        rgb_np = np.asfarray(rgb_np, dtype='float') / 255
        depth_np = transform(depth_np)

        # for compare with Eigen's paper
        depth_np = depth_data_transforms(depth_np)

        return rgb_np, depth_np
    def train_transform(self, rgb, depth):
        s = np.random.uniform(1.0, 1.5)  # random scaling
        depth_np = depth / s
        angle = np.random.uniform(-5.0, 5.0)  # random rotation degrees
        do_flip = np.random.uniform(0.0, 1.0) < 0.5  # random horizontal flip

        # perform 1st step of data augmentation
        transform = transforms.Compose([
            #Why not crop like in KITTI? Also, if resizing done, why not reflect this in depth_np as well?
            transforms.Resize(
                250.0 / iheight
            ),  # this is for computational efficiency, since rotation can be slow
            transforms.Rotate(angle),
            transforms.Resize(s),
            transforms.CenterCrop(self.output_size),
            transforms.HorizontalFlip(do_flip)
        ])
        rgb_np = transform(rgb)
        rgb_np = self.color_jitter(rgb_np)  # random color jittering
        rgb_np = np.asfarray(rgb_np, dtype='float') / 255
        depth_np = transform(depth_np)

        return rgb_np, depth_np
Example #24
0
    def validate_transform(self, rgb, depth):
        h_offset = int((768 - 228) * np.random.uniform(0.0, 1.0))
        v_offset = int((1024 - 304) * np.random.uniform(0.0, 1.0))

        base_transform = transforms.Compose([
            transforms.Resize(240.0 / iheight),
            transforms.CenterCrop(self.output_size),
        ])

        rgb = base_transform(rgb)
        rgb = rgb / 255.0
        depth = base_transform(depth)

        return (rgb, depth)
Example #25
0
    def train_transform(self, rgb, depth):
        s = np.random.uniform(1.0, 1.5) # random scaling
        depth_np = depth / s
        angle = np.random.uniform(-5.0, 5.0) # random rotation degrees
        do_flip = np.random.uniform(0.0, 1.0) < 0.5 # random horizontal flip
        iheight = rgb.shape[0]

        # perform 1st step of data augmentation
        transform = transforms.Compose([
            transforms.Resize(250.0 / iheight), # this is for computational efficiency, since rotation can be slow
            transforms.Rotate(angle),
            transforms.Resize(s),
            transforms.CenterCrop((228, 304)),
            transforms.HorizontalFlip(do_flip),
            transforms.Resize(self.output_size),
        ])
        rgb_np = transform(rgb)
        rgb_np = self.color_jitter(rgb_np) # random color jittering
        rgb_np = np.asfarray(rgb_np, dtype='float') / 255
        if depth_np.ndim != 2:
            print("Wrong Depth ",depth_np)
        depth_np = transform(depth_np)

        return rgb_np, depth_np
Example #26
0
    def train_transform(self, rgb, depth):
        s = np.random.uniform(1.0, 1.5)  # random scaling
        # s = 1.5
        depth_np = depth / s
        angle = np.random.uniform(-5.0, 5.0)  # random rotation degrees
        do_flip = np.random.uniform(0.0, 1.0) < 0.5  # random horizontal flip

        # perform 1st step of data augmentation
        transform = transforms.Compose([
            transforms.Resize(
                250.0 / iheight
            ),  # this is for computational efficiency, since rotation can be slow
            transforms.Rotate(angle),
            transforms.Resize(
                s),  # TODO (Katie): figure out how to resize properly
            transforms.RandomCrop(self.output_size),
            transforms.HorizontalFlip(do_flip)
        ])
        rgb_np = transform(rgb)
        rgb_np = self.color_jitter(rgb_np)  # random color jittering
        rgb_np = np.asfarray(rgb_np, dtype='float') / 255
        depth_np = transform(depth_np)

        return rgb_np, depth_np
    def train_transform(self, rgb, depth):
        s = np.random.uniform(1.0, 1.5)  # random scaling
        depth_np = depth / s
        angle = np.random.uniform(-5.0, 5.0)  # random rotation degrees
        do_flip = np.random.uniform(0.0, 1.0) < 0.5  # random horizontal flip

        # perform 1st step of data augmentation
        transform = transforms.Compose([
            transforms.Crop(0, 20, 750, 2000),
            transforms.Resize(500 / 750),
            transforms.Rotate(angle),
            transforms.Resize(s),
            transforms.CenterCrop(self.output_size),
            transforms.HorizontalFlip(do_flip)
        ])
        rgb_np = transform(rgb)
        rgb_np = self.color_jitter(rgb_np)  # random color jittering
        rgb_np = np.asfarray(rgb_np, dtype='float') / 255
        # Scipy affine_transform produced RuntimeError when the depth map was
        # given as a 'numpy.ndarray'
        depth_np = np.asfarray(depth_np, dtype='float32')
        depth_np = transform(depth_np)

        return rgb_np, depth_np
Example #28
0
    def val_transform(self, rgb, depth):
        # for create fake underwater images
        rgb = uw_style(rgb, depth)
        rgb /= rgb.max() / 255
        rgb = rgb.astype(np.uint8)

        depth_np = depth
        transform = transforms.Compose([
            # transforms.CenterCrop(self.output_size),
            transforms.Resize(size=self.output_size)
        ])
        rgb_np = transform(rgb)
        rgb_np = np.asfarray(rgb_np, dtype='float') / 255
        depth_np = transform(depth_np)

        return rgb_np, depth_np
Example #29
0
    def val_transform(self, rgb, depth, rgb_near):
        depth_np = depth
        transform = transforms.Compose([
            transforms.Resize(240.0 / iheight),
            transforms.CenterCrop(self.output_size),
        ])
        rgb_np = transform(rgb)
        rgb_np = np.asfarray(rgb_np, dtype='float') / 255
        rgb_near_np = None
        if rgb_near is not None:
            rgb_near_np = transform(rgb_near)
            rgb_near_np = np.asfarray(rgb_near_np, dtype='float') / 255
        depth_np = transform(depth_np)
        self.K = TransfromIntrinsics(self.K, (240.0 / iheight),
                                     self.output_size)

        return rgb_np, depth_np, rgb_near_np
    def val_transform(self, attrib_list):

        iheight = attrib_list['gt_depth'].shape[0]
        iwidth = attrib_list['gt_depth'].shape[1]

        transform = transforms.Compose([
            transforms.Resize(240.0 / iheight),
            transforms.CenterCrop(self.output_size),
        ])

        attrib_np = dict()

        if self.depth_divider == 0:
            if 'fd' in attrib_list:
                minmax_image = transform(attrib_list['fd'])
                max_depth = max(minmax_image.max(), 1.0)
            if 'kor' in attrib_list:
                minmax_image = transform(attrib_list['kor'])
                max_depth = max(minmax_image.max(), 1.0)
            else:
                max_depth = 50

            scale = 10.0 / max_depth  # 10 is arbitrary. the network only converge in a especific range
        else:
            scale = 1.0 / self.depth_divider

        attrib_np['scale'] = 1.0 / scale

        for key, value in attrib_list.items():
            attrib_np[key] = transform(value)
            if key in Modality.need_divider:  #['gt_depth','fd','kor','kde','kgt','dor','dde', 'd3dwde','d3dwor','dvor','dvde','dvgt']:
                attrib_np[key] = scale * attrib_np[
                    key]  #(attrib_np[key] - min_depth+0.01) / (max_depth - min_depth)
            elif key in Modality.image_size_weight_names:
                attrib_np[key] = attrib_np[key] / (
                    iwidth * 1.5)  #1.5 about sqrt(2)- square's diagonal
            elif key == 'rgb':
                attrib_np[key] = (np.asfarray(attrib_np[key], dtype='float') /
                                  255).transpose((2, 0, 1))
            elif key == 'grey':
                attrib_np[key] = np.expand_dims(
                    np.asfarray(attrib_np[key], dtype='float') / 255, axis=0)

        return attrib_np