def test_valid_predict_data_formats(self, mock_open, mock_load_model): def _valid_check(data): try: print("\tChecking data format: {}".format(str(type(data)))) data = BaseDataLabeler._check_and_return_valid_data_format( data, fit_or_predict='predict') except Exception as e: self.fail("Exception raised on input of accepted types.") return data valid_data = [ CSVData(data=pd.DataFrame([])), JSONData(data=pd.DataFrame([])), ParquetData(data=pd.DataFrame([])), AVROData(data=pd.DataFrame([])), pd.DataFrame([]), list(), np.array([]), pd.Series([], dtype=object) ] print("\nValid Data Predict Checks:") for data in valid_data: data = _valid_check(data) self.assertTrue( isinstance(data, np.ndarray) or isinstance(data, pd.Series) or isinstance(data, pd.DataFrame))
def test_valid_fit_data_formats(self, *mocks): def _valid_check(data): try: print("\tChecking data format: {}".format(str(type(data)))) data = UnstructuredDataLabeler._check_and_return_valid_data_format( data, fit_or_predict="fit") except Exception as e: self.fail("Exception raised on input of accepted types.") return data valid_data = [ CSVData(data=pd.DataFrame([])), JSONData(data=pd.DataFrame([])), ParquetData(data=pd.DataFrame([])), AVROData(data=pd.DataFrame([])), pd.DataFrame([]), list(), np.array([]), ] print("\nValid Data Fit Checks:") for data in valid_data: data = _valid_check(data) self.assertIsInstance(data, np.ndarray)