Example #1
0
    def test_unstructured_labeler_profile_add(self, mock):
        # Test empty merge
        profile1 = UnstructuredLabelerProfile()
        profile2 = UnstructuredLabelerProfile()
        merged_profile = profile1 + profile2

        self.assertDictEqual(merged_profile.entity_counts["word_level"], {})
        self.assertDictEqual(merged_profile.entity_counts["true_char_level"],
                             {})
        self.assertDictEqual(
            merged_profile.entity_counts["postprocess_char_level"], {})
        self.assertEqual(merged_profile.word_sample_size, 0)
        self.assertEqual(merged_profile.char_sample_size, 0)

        # Test merge with data
        profile1.word_sample_size = 7
        profile1.char_sample_size = 6
        profile1.entity_counts["word_level"]["UNKNOWN"] = 5
        profile1.entity_counts["word_level"]["TEST"] = 2
        profile1.entity_counts["true_char_level"]["PAD"] = 6
        profile1.entity_counts["postprocess_char_level"]["UNKNOWN"] = 3

        profile2.word_sample_size = 4
        profile2.char_sample_size = 4
        profile2.entity_counts["word_level"]["UNKNOWN"] = 3
        profile2.entity_counts["word_level"]["PAD"] = 1
        profile2.entity_counts["postprocess_char_level"]["UNKNOWN"] = 2

        merged_profile = profile1 + profile2
        expected_word_level = {"UNKNOWN": 8, "TEST": 2, "PAD": 1}
        expected_true_char = {"PAD": 6}
        expected_post_char = {"UNKNOWN": 5}

        self.assertDictEqual(merged_profile.entity_counts["word_level"],
                             expected_word_level)
        self.assertDictEqual(merged_profile.entity_counts["true_char_level"],
                             expected_true_char)
        self.assertDictEqual(
            merged_profile.entity_counts["postprocess_char_level"],
            expected_post_char)

        self.assertEqual(merged_profile.word_sample_size, 11)
        self.assertEqual(merged_profile.char_sample_size, 10)

        self.assertEqual(
            merged_profile.times["data_labeler_predict"],
            profile1.times["data_labeler_predict"] +
            profile2.times["data_labeler_predict"],
        )
Example #2
0
    def test_statistics(self):
        # setting up objects/profile
        default = UnstructuredLabelerProfile()

        sample = pd.Series(
            ["Help\tJohn Macklemore\tneeds\tfood.\tPlease\tCall\t555-301-1234."
             "\tHis\tssn\tis\tnot\t334-97-1234. I'm a BAN: 000043219499392912."
             "\n", "Hi my name is joe, \t SSN: 123456789 r@nd0m numb3rz!\n"])

        # running update
        default.update(sample)

        self.assertIsNotNone(default.entity_percentages['word_level'])
        self.assertIsNotNone(default.entity_percentages['true_char_level'])
        self.assertIsNotNone(default.entity_percentages['postprocess_char_level'])
        current_word_sample_size = default.word_sample_size
        current_char_sample_size = default.char_sample_size
        self.assertIsNotNone(default.word_sample_size)
        self.assertIsNotNone(default.char_sample_size)
        self.assertIsNotNone(default.entity_counts['word_level'])
        self.assertIsNotNone(default.entity_counts['true_char_level'])
        self.assertIsNotNone(default.entity_counts['postprocess_char_level'])
        self.assertIsNone(default._get_percentages('WRONG_INPUT'))

        default.update(sample)
        self.assertNotEqual(current_word_sample_size, default.word_sample_size)
        self.assertNotEqual(current_char_sample_size, default.char_sample_size)
Example #3
0
    def test_entity_percentages(self, mock1, mock2):
        """
        Tests to see that entity percentages match the counts given
        """
        profile = UnstructuredLabelerProfile()
        profile.char_sample_size = 20
        profile.word_sample_size = 10
        profile.entity_counts["postprocess_char_level"]["UNKNOWN"] = 6
        profile.entity_counts["postprocess_char_level"]["TEST"] = 14
        profile.entity_counts["true_char_level"]["UNKNOWN"] = 4
        profile.entity_counts["true_char_level"]["TEST"] = 16
        profile.entity_counts["word_level"]["UNKNOWN"] = 5
        profile.entity_counts["word_level"]["TEST"] = 5
        profile.update(pd.Series(["a"]))

        expected_percentages = {
            'postprocess_char_level': defaultdict(int, {'UNKNOWN': 0.3,
                                                        'TEST': 0.7}),
            'true_char_level': defaultdict(int, {'UNKNOWN': 0.2,
                                                 'TEST': 0.8}),
            'word_level': defaultdict(int, {'UNKNOWN': 0.5,
                                            'TEST': 0.5})
        }

        percentages = profile.profile['entity_percentages']

        self.assertDictEqual(expected_percentages, percentages)
Example #4
0
    def test_profile(self, processor_class_mock, model_class_mock):
        # setup mocks
        model_mock = mock.Mock()
        model_mock.reverse_label_mapping = {1: 'UNKNOWN'}
        model_mock.predict.return_value = dict(pred=[[1]])
        model_class_mock.return_value = model_mock
        processor_mock = mock.Mock()
        processor_mock.process.return_value = dict(pred=[[]])
        processor_class_mock.return_value = processor_mock

        # initialize labeler profile
        default = UnstructuredLabelerProfile()

        sample = pd.Series(["a"])
        expected_profile = dict(
            entity_counts={
                'postprocess_char_level': defaultdict(int, {'UNKNOWN': 1}),
                'true_char_level': defaultdict(int, {'UNKNOWN': 1}),
                'word_level': defaultdict(int)
            },
            entity_percentages={
                'postprocess_char_level': defaultdict(int, {'UNKNOWN': 1.0}),
                'true_char_level': defaultdict(int, {'UNKNOWN': 1.0}),
                'word_level': defaultdict(int)
            },
            times=defaultdict(float, {'data_labeler_predict': 1.0})
        )

        time_array = [float(i) for i in range(4, 0, -1)]
        with mock.patch('time.time', side_effect=lambda: time_array.pop()):
            default.update(sample)
        profile = default.profile

        # key and value populated correctly
        self.assertDictEqual(expected_profile, profile)
Example #5
0
    def test_word_level_NER_label_counts(self):
        # setting up objects/profile
        default = UnstructuredLabelerProfile()

        sample = pd.Series(
            ["Help\tJohn Macklemore\tneeds\tfood.\tPlease\tCall\t555-301-1234."
             "\tHis\tssn\tis\tnot\t334-97-1234. I'm a BAN: 000049939232194912."
             "\n", "Hi my name is joe, \t SSN: 123456789 r@nd0m numb3rz!\n"])

        # running update
        default.update(sample)

        # now getting entity_counts to check for proper structure
        self.assertIsNotNone(default.profile["entity_counts"]["word_level"])

        # assert it's not empty for now
        self.assertIsNotNone(default.profile)
Example #6
0
    def test_char_level_counts(self):
        # setting up objects/profile
        default = UnstructuredLabelerProfile()

        sample = pd.Series(["abc123", "Bob", "!@##$%"])

        # running update
        default.update(sample)
        # now getting entity_counts to check for existence
        self.assertIsNotNone(default.profile["entity_counts"]
                             ["true_char_level"])

        self.assertIsNotNone(default.profile["entity_counts"]
                             ["postprocess_char_level"])

        # assert it's not empty for now
        self.assertIsNotNone(default.profile)

        # then assert that correctly counted number of char samples
        self.assertEqual(default.char_sample_size, 15)
Example #7
0
    def test_report(self, processor_class_mock, model_class_mock):
        # setup mocks
        model_mock = mock.Mock()
        model_mock.reverse_label_mapping = {1: "UNKNOWN"}
        model_mock.predict.return_value = dict(pred=[[1]])
        model_class_mock.return_value = model_mock
        processor_mock = mock.Mock()
        processor_mock.process.return_value = dict(pred=[[]])
        processor_class_mock.return_value = processor_mock

        # initialize labeler profile
        profile = UnstructuredLabelerProfile()

        sample = pd.Series(["a"])

        time_array = [float(i) for i in range(4, 0, -1)]
        with mock.patch("time.time", side_effect=lambda: time_array.pop()):
            profile.update(sample)

        report1 = profile.profile
        report2 = profile.report(remove_disabled_flag=False)
        report3 = profile.report(remove_disabled_flag=True)
        self.assertDictEqual(report1, report2)
        self.assertDictEqual(report1, report3)
Example #8
0
    def test_diff(self, mock1, mock2):
        """
        Tests to see that entity percentages match the counts given
        """
        profiler1 = UnstructuredLabelerProfile()
        profiler1.char_sample_size = 20
        profiler1.word_sample_size = 15
        profiler1.entity_counts["postprocess_char_level"]["UNKNOWN"] = 5
        profiler1.entity_counts["postprocess_char_level"]["TEST"] = 10
        profiler1.entity_counts["postprocess_char_level"]["UNIQUE1"] = 5
        profiler1.entity_counts["true_char_level"]["UNKNOWN"] = 4
        profiler1.entity_counts["true_char_level"]["TEST"] = 8
        profiler1.entity_counts["true_char_level"]["UNIQUE1"] = 8
        profiler1.entity_counts["word_level"]["UNKNOWN"] = 5
        profiler1.entity_counts["word_level"]["TEST"] = 5
        profiler1.entity_counts["word_level"]["UNIQUE1"] = 5
        profiler1.update(pd.Series(["a"]))

        profiler2 = UnstructuredLabelerProfile()
        profiler2.char_sample_size = 20
        profiler2.word_sample_size = 10
        profiler2.entity_counts["postprocess_char_level"]["UNKNOWN"] = 5
        profiler2.entity_counts["postprocess_char_level"]["TEST"] = 10
        profiler2.entity_counts["postprocess_char_level"]["UNIQUE2"] = 5
        profiler2.entity_counts["true_char_level"]["UNKNOWN"] = 8
        profiler2.entity_counts["true_char_level"]["TEST"] = 8
        profiler2.entity_counts["true_char_level"]["UNIQUE2"] = 4
        profiler2.entity_counts["word_level"]["UNKNOWN"] = 2
        profiler2.entity_counts["word_level"]["TEST"] = 4
        profiler2.entity_counts["word_level"]["UNIQUE2"] = 4
        profiler2.update(pd.Series(["a"]))

        expected_diff = {
            'entity_counts': {
                'postprocess_char_level': {
                    'UNKNOWN': "unchanged",
                    'TEST': "unchanged",
                    'UNIQUE1': [5, None],
                    'UNIQUE2': [None, 5]
                },
                'true_char_level': {
                    'UNKNOWN': -4,
                    'TEST': "unchanged",
                    'UNIQUE1': [8, None],
                    'UNIQUE2': [None, 4]
                },
                'word_level': {
                    'UNKNOWN': 3,
                    'TEST': 1,
                    'UNIQUE1': [5, None],
                    'UNIQUE2': [None, 4]
                }
            },
            'entity_percentages': {
                'postprocess_char_level': {
                    'UNKNOWN': "unchanged",
                    'TEST': "unchanged",
                    'UNIQUE1': [1/4, None],
                    'UNIQUE2': [None, 1/4]
                },
                'true_char_level': {
                    'UNKNOWN': -1/5,
                    'TEST': "unchanged",
                    'UNIQUE1': [2/5, None],
                    'UNIQUE2': [None, 1/5]
                },
                'word_level': {
                    'UNKNOWN': 1/3 - 1/5,
                    'TEST': 1/3 - 2/5,
                    'UNIQUE1': [1/3, None],
                    'UNIQUE2': [None, 2/5]
                }
            }
        }
        self.assertDictEqual(expected_diff, profiler1.diff(profiler2))

        # Test with empty profile
        profiler1 = UnstructuredLabelerProfile()
        profiler1.char_sample_size = 5
        profiler1.word_sample_size = 5
        profiler1.entity_counts["postprocess_char_level"]["UNKNOWN"] = 5
        profiler1.entity_counts["true_char_level"]["UNKNOWN"] = 5
        profiler1.entity_counts["word_level"]["UNKNOWN"] = 5
        profiler1.update(pd.Series(["a"]))

        profiler2 = UnstructuredLabelerProfile()
        profile2 = profiler2.profile

        expected_diff = {
            'entity_counts': {
                'postprocess_char_level': {
                    'UNKNOWN': [5, None],
                },
                'true_char_level': {
                    'UNKNOWN': [5, None],
                },
                'word_level': {
                    'UNKNOWN': [5, None],
                }
            },
            'entity_percentages': {
                'postprocess_char_level': {
                    'UNKNOWN': [1, None],
                },
                'true_char_level': {
                    'UNKNOWN': [1, None],
                },
                'word_level': {
                    'UNKNOWN': [1, None],
                }
            }
        }
        self.assertDictEqual(expected_diff, profiler1.diff(profiler2))