# coding: utf-8 import sys, os sys.path.append(os.pardir) # 親ディレクトリのファイルをインポートするための設定 import numpy as np from dataset.cifar10 import load_cifar10 from PIL import Image np.set_printoptions(threshold=100) (x_train, t_train), (x_test, t_test) = load_cifar10(flatten=False) x_test = x_test[:, :, :, ::-1] padded = np.pad(x_test, ((0, 0), (0, 0), (4, 4), (0, 0)), mode='constant') crops = np.random.randint(8, size=(len(x_test), 1)) x_test = np.array( [padded[i, :, c[0]:(c[0] + 32), :] for i, c in enumerate(crops)]) sample_image = x_test[0:100].reshape((10, 10, 3, 32, 32)).transpose( (0, 3, 1, 4, 2)).reshape((320, 320, 3)) # 先頭100個をタイル状に並べ替える Image.fromarray(np.uint8(sample_image * 255)).save('sample.png') print(t_test[0:100].reshape(10, 10)) #pil_img = Image.fromarray(np.uint8(sample_image*255)) #pil_img.show()
# coding: utf-8 import sys, os sys.path.append(os.pardir) # 親ディレクトリのファイルをインポートするための設定 import pickle import time import cupy as cp #import numpy as cp import numpy as np import matplotlib.pyplot as plt from dataset.cifar10 import load_cifar10 from simple_convnet import SimpleConvNet from common.trainer import Trainer # データの読み込み (x_train, t_train), (x_test, t_test) = load_cifar10(normalize=False, flatten=False, one_hot_label=True) x_train = x_train * 2.0 - 255 x_test = x_test * 2.0 - 255 if os.path.exists("ttarray.pkl"): with open("ttarray.pkl", 'rb') as f: t_train = pickle.load(f) print("Loaded Teacher array!") # 処理に時間のかかる場合はデータを削減 #train_mask = np.random.choice(x_train.shape[0], 3000) #x_train = x_train[train_mask] #t_train = t_train[train_mask] max_epochs = 25
# coding: utf-8 import sys, os sys.path.append(os.pardir) # 親ディレクトリのファイルをインポートするための設定 import pickle from common.np import * # import numpy as np from common.config import GPU from dataset.cifar10 import load_cifar10 from slim_convnet import ConvNet from common.functions import * # データの読み込み (x_train, t_train), (x_test, t_test) = load_cifar10(normalize=False, flatten=False) #x_train = x_train[:1000] #t_train = t_train[:1000] x_train = x_train * 2.0 - 255 x_test = x_test * 2.0 - 255 batch_size = 100 network = ConvNet(input_dim=(3, 32, 32), weight_init_std=0.01) # パラメータの復帰 network.load_params("params.pkl") print("Loaded Network Parameters!") tt_array = np.empty((0, 10), np.float32) for i in range(int(x_train.shape[0] / batch_size)):