def load_data(): train_data = dataset.Market_DataLoader(imgs_path=cfg.TRAIN.imgs_path, pose_path=cfg.TRAIN.pose_path, idx_path=cfg.TRAIN.idx_path, transform=dataset.train_transform(), loader=dataset.val_loader) train_loader = Data.DataLoader(train_data, batch_size=cfg.TRAIN.BATCH_SIZE, shuffle=True, num_workers=cfg.TRAIN.NUM_WORKERS, drop_last=True) val_data = dataset.Market_DataLoader(imgs_path=cfg.TRAIN.imgs_path, pose_path=cfg.TRAIN.pose_path, idx_path=cfg.TEST.idx_path, transform=dataset.val_transform(), loader=dataset.val_loader) val_loader = Data.DataLoader(val_data, batch_size=cfg.TEST.BATCH_SIZE, shuffle=False, num_workers=cfg.TRAIN.NUM_WORKERS) train = [train_data, train_loader] val = [val_data, val_loader] return train, val
def loss_func(): criterionGAN = torch.nn.MSELoss().cuda() criterionIdt = torch.nn.L1Loss().cuda() criterionAtt = torch.nn.CrossEntropyLoss().cuda() criterion = [criterionGAN, criterionIdt, criterionAtt] return criterion #%% if __name__ == '__main__': sys.stdout = logger.Logger('./log_GAN_ep2.txt') train_data = dataset.Market_DataLoader(imgs_path=cfg.TRAIN.imgs_path, pose_path=cfg.TRAIN.pose_path, idx_path=cfg.TRAIN.idx_path, transform=dataset.train_transform(), img_loader=dataset.val_loader, pose_loader=dataset.pose_loader) train_loader = Data.DataLoader(train_data, batch_size=cfg.TRAIN.BATCH_SIZE, shuffle=True, num_workers=cfg.TRAIN.NUM_WORKERS, drop_last=True) val_data = dataset.Market_DataLoader(imgs_path=cfg.TRAIN.imgs_path, pose_path=cfg.TRAIN.pose_path, idx_path=cfg.TEST.idx_path, transform=dataset.val_transform(), img_loader=dataset.val_loader, pose_loader=dataset.pose_loader) val_loader = Data.DataLoader(val_data, batch_size=cfg.TEST.BATCH_SIZE, shuffle=False, num_workers=cfg.TRAIN.NUM_WORKERS) train_file = [train_data, train_loader] val_file = [val_data, val_loader] # train_file, val_file = load_data() nets = load_network()