import torch.nn.parallel import torch.backends.cudnn as cudnn import torch.optim import torch.utils.data import torchvision.transforms as transforms import torchvision.datasets as datasets H5_address = '/home/lyq/caffe-master/data_gaze/gaze_detection/h5/' Save_model_address = '/disks/disk0/linyuqi/model/gaze_2eye_AR/' BatchSize = 64 gaze_model = model.gaze_model() gaze_model = nn.DataParallel(gaze_model) gaze_model.cuda() img_list_left, img_list_right = dataset.load_all_h5(H5_address) #print(img_list_left[1]) #print(img_list_right[1]) train_Dataset = dataset.train_gaze_dataset(img_list_left, img_list_right) test_Dataset = dataset.test_gaze_dataset(img_list_left, img_list_right) train_loader = torch.utils.data.DataLoader(train_Dataset, batch_size=BatchSize, num_workers=6) test_loader = torch.utils.data.DataLoader(test_Dataset, batch_size=BatchSize, num_workers=6) l1_loss = nn.SmoothL1Loss().cuda() #l1_loss = nn.MSELoss().cuda() #optimizer = torch.optim.Adam(gaze_model.parameters(),lr=0.01)
import torch.nn as nn import torch.nn.parallel import torch.backends.cudnn as cudnn import torch.optim import torch.utils.data import torchvision.transforms as transforms import torchvision.datasets as datasets H5_address = '/home/lyq/caffe-master/data_gaze/gaze_detection/h5/' Save_model_address = '/disks/disk0/linyuqi/model/gaze_demo/' gaze_model = model.gaze_model() #gaze_model = nn.DataParallel(gaze_model) gaze_model.cuda() img_list = dataset.load_all_h5(H5_address) train_Dataset = dataset.train_gaze_dataset(img_list) test_Dataset = dataset.test_gaze_dataset(img_list) train_loader = torch.utils.data.DataLoader(train_Dataset, batch_size=128, num_workers=6) test_loader = torch.utils.data.DataLoader(test_Dataset, batch_size=128, num_workers=6) l1_loss = nn.SmoothL1Loss().cuda() optimizer = torch.optim.Adam(gaze_model.parameters(), lr=0.001) def train(): gaze_model.train()
#AR_down_model = model_ns.AR_Net_down() #AR_down_model = nn.DataParallel(AR_down_model) #AR_down_model.cuda() #AR_up_model = model_ns.AR_Net_up() #AR_up_model = nn.DataParallel(AR_down_model) #AR_up_model.cuda() loss_f_ARE = loss_func.loss_f_ARE() loss_f_ARE.cuda() loss_f_E = loss_func.loss_f_E() loss_f_E.cuda() #img_train_list, img_test_list = dataset.load_all_h5(H5_address) train_list = dataset.load_all_h5(H5_train_address) test_list = dataset.load_h5_list(H5_test_address) train_Dataset = dataset.gaze_train_dataset(train_list) test_Dataset = dataset.gaze_test_dataset(test_list) train_loader = torch.utils.data.DataLoader(train_Dataset, shuffle=True, batch_size=BatchSize, num_workers=4) test_loader = torch.utils.data.DataLoader(test_Dataset, shuffle=True, batch_size=BatchSize, num_workers=4) #L1_loss = nn.SmoothL1Loss().cuda() #l1_loss = nn.MSELoss().cuda() #optimizer = torch.optim.Adam(gaze_model.parameters(),lr=0.01)