Example #1
0
    if not os.path.exists(model_dir):
        os.makedirs(model_dir)
    # weight_dir = args.weight_dir
    mini = not args.complete
    full_y = args.full_y
    shuffle = not args.no_shuffle

    mini = False
    full_y = False
    shuffle = True

    params = get_general_params()
    params['IMG_HEIGHT'] = 256
    params['IMG_WIDTH'] = 256
    params['posemap_downsample'] = 2
    ds = mtdataset(params, mini=mini, full_y=full_y)
    dl = DataLoader(ds, bs, shuffle)
    model = MModel(params, use_cuda=True).cuda()
    model.train()
    # model.load_state_dict(torch.load('/versa/kangliwei/motion_transfer/0424-gan/g_epoch_1670.pth'), strict=False)
    # model.load_state_dict(torch.load('/versa/kangliwei/motion_transfer/0429-256-gan/g_epoch_720.pth'))
    model.load_state_dict(torch.load('/versa/kangliwei/motion_transfer/0604-gan/epoch_290.pth'))
    # if start_epoch != 0:
    #     model.load_state_dict(torch.load('/versa/kangliwei/motion_transfer/'+weight_dir+'/epoch_%d.pth'%(start_epoch-1)))
    vgg_loss = VGGPerceptualLoss().cuda()
    l1mask_loss = L1MaskLoss().cuda()
    model_params = model.parameters()
    optimizer = torch.optim.Adam(model_params, lr=lr)
    writer = SummaryWriter('runs/'+model_dir)

    print('len(dl)', len(dl))
Example #2
0
    parser.add_argument('--full_y', action='store_true')
    parser.add_argument('--no_shuffle', action='store_true')

    args = parser.parse_args()

    n_epoch = args.n_epoch
    bs = args.bs
    start_epoch = args.start_epoch
    mini = not args.complete
    full_y = args.full_y
    shuffle = not args.no_shuffle
    args.use_cuda = True

    params = get_general_params()
    params['IMG_HEIGHT'] = 256
    params['IMG_WIDTH'] = 256
    params['posemap_downsample'] = 2
    GAN = gan(params, args)

    ds = mtdataset(params, mini=mini, full_y=full_y)
    dl = DataLoader(ds, bs, shuffle)

    test_ds = mtdataset(params, mini=False, full_y=full_y, mode='test')
    test_dl = DataLoader(test_ds, 16, shuffle=False)

    for epoch in range(args.start_epoch + 1, args.n_epoch + args.start_epoch):
        if epoch == 1:
            GAN.test(test_dl, epoch)
        GAN.train(dl, epoch)
        if epoch % args.save_freq == 0:
            GAN.test(test_dl, epoch)
            face_heatmap = torch.from_numpy(face_heatmap)
            face_heatmap = torch.sum(face_heatmap, dim=2).unsqueeze(0)
            ret[i] = face_heatmap
            ret = torch.clamp(ret, 0, 1)
        return ret

if __name__ == '__main__':
    params = get_general_params()
    params['IMG_HEIGHT'] = 256
    params['IMG_WIDTH'] = 256
    params['posemap_downsample'] = 2
    bs = 1
    epoch = 0
    use_cuda = True
    mode = 'test'
    ds = mtdataset(params, mini=False, full_y=False, mode=mode)
    dl = DataLoader(ds, bs, shuffle=False)
    writer = SummaryWriter(log_dir='runs/debug')
    dsi = ds[0]
    dli = next(iter(dl))
    detector = face_detector()
    for i, item in enumerate(dsi):
        print('ds', i, item.size())
    frames = ds.frames

    total = 0
    good = 0
    for i in range(len(ds)):
        for j in range(len(frames[i])):
            total += 1
            src_img, y, src_pose, tgt_pose, src_mask_prior, x_trans, src_mask_gt, tgt_face, tgt_face_box, src_face_box = ds.get(i, [0, j])
Example #4
0
        # fg_mask = self.FG_mask_Conv(FG)
        # fg_mask = F.sigmoid(fg_mask)
        # fg_mask = torch.cat((fg_mask, fg_mask, fg_mask), dim=1)

        # fg_tgt = torch.mul(fg_tgt, fg_mask)

        return fg_tgt, src_mask_delta, src_mask, warped_stack


if __name__ == '__main__':
    import cv2
    from param import get_general_params
    params = get_general_params()

    ds = mtdataset(params, full_y=False)
    dl = DataLoader(ds, 1)

    model = MModel(params, use_cuda=True).cuda()

    from torch.utils.tensorboard import SummaryWriter
    writer = SummaryWriter('runs/debug')
    for src_img, y, src_pose, tgt_pose, src_mask_prior, x_trans, src_mask_gt in dl:
        src_img, y, src_pose, tgt_pose, src_mask_prior, x_trans, src_mask_gt = src_img.cuda(
        ), y.cuda(), src_pose.cuda(), tgt_pose.cuda(), src_mask_prior.cuda(
        ), x_trans.cuda(), src_mask_gt.cuda()
        out = model(src_img, src_pose, tgt_pose, src_mask_prior, x_trans)
        # writer.add_images('src_simg', src_img)
        # warped = out[-1][0].view(11, 3, out[-1][0].size(1), out[-1][0].size(2))
        # print(warped.size(), warped.max(), warped.min(), warped.dtype)
        # print(src_img.size(), src_img.max(), src_img.min(), src_img.dtype)