Example #1
0
def test_eval():
    data_root = "data_dir"
    dataset = AudiobookDataset(data_root)
    if hp.input_type == 'raw':
        collate_fn = raw_collate
    elif hp.input_type == 'bits':
        collate_fn = discrete_collate
    else:
        raise ValueError("input_type:{} not supported".format(hp.input_type))
    data_loader = DataLoader(dataset, collate_fn=collate_fn, shuffle=True, num_workers=0, batch_size=hp.batch_size)
    device = torch.device("cuda" if use_cuda else "cpu")
    print("using device:{}".format(device))

    # build model, create optimizer
    model = build_model().to(device)

    evaluate_model(model, data_loader)
Example #2
0
        print("epoch:{}, running loss:{}, average loss:{}, current lr:{}".format(global_epoch, running_loss, avg_loss, current_lr))
        global_epoch += 1



if __name__=="__main__":
    args = docopt(__doc__)
    #print("Command line args:\n", args)
    checkpoint_dir = args["--checkpoint-dir"]
    checkpoint_path = args["--checkpoint"]
    data_root = args["<data-root>"]

    # make dirs, load dataloader and set up device
    os.makedirs(checkpoint_dir, exist_ok=True)
    os.makedirs(os.path.join(checkpoint_dir,'eval'), exist_ok=True)
    dataset = AudiobookDataset(data_root)
    if hp.input_type == 'raw':
        collate_fn = raw_collate
    elif hp.input_type == 'mixture':
        collate_fn = raw_collate
    elif hp.input_type in ['bits', 'mulaw']:
        collate_fn = discrete_collate
    else:
        raise ValueError("input_type:{} not supported".format(hp.input_type))
    data_loader = DataLoader(dataset, collate_fn=collate_fn, shuffle=True, num_workers=0, batch_size=hp.batch_size)
    device = torch.device("cuda" if use_cuda else "cpu")
    print("using device:{}".format(device))

    # build model, create optimizer
    model = build_model().to(device)
    optimizer = optim.Adam(model.parameters(),
Example #3
0
    use_cuda = not args.no_cuda and torch.cuda.is_available()
    device = torch.device("cuda" if use_cuda else "cpu")
    
    kwargs = {'num_workers': 8, 'pin_memory': True} if use_cuda else {}

    torch.autograd.set_detect_anomaly(True)
    
    with open(os.path.join(data_path, 'train_data.json'), 'r') as f:
        train_data = json.load(f)

    with open(os.path.join(data_path, 'test_data.json'), 'r') as f:
        test_data = json.load(f)

    train_loader = torch.utils.data.DataLoader(
        AudiobookDataset(train_data),
        collate_fn=train_collate,
        batch_size=args.batch_size, shuffle=True, **kwargs)

    test_loader = torch.utils.data.DataLoader(
        AudiobookDataset(test_data),
        collate_fn=test_collate,
        batch_size=1, shuffle=False, **kwargs)

    model = Generator(hp.dim_neck, hp.dim_emb, hp.dim_pre, hp.freq).to(device)
    optimizer = optim.Adam(model.parameters(), lr=args.lr)

    current_epoch = 0
    if args.checkpoint:
        current_epoch = load_checkpoint(args.checkpoint, model, device, optimizer)
    
Example #4
0
        global_epoch += 1



if __name__=="__main__":
    args = docopt(__doc__)
    #print("Command line args:\n", args)
    checkpoint_dir = args["--checkpoint-dir"]
    checkpoint_path = args["--checkpoint"]
    data_root = args["<data-root>"]

    # make dirs, load dataloader and set up device
    os.makedirs(checkpoint_dir, exist_ok=True)
    os.makedirs(os.path.join(checkpoint_dir,'eval'), exist_ok=True)
    # 3_0
    dataset = AudiobookDataset(data_root, split_n_mels=hp.num_mels, axis_splits=hp.axis_splits, axis_splits_offset=hp.split_offset)
    if hp.input_type == 'raw':
        collate_fn = raw_collate
    elif hp.input_type == 'mixture':
        collate_fn = raw_collate
    elif hp.input_type in ['bits', 'mulaw']:
        collate_fn = discrete_collate
    else:
        raise ValueError("input_type:{} not supported".format(hp.input_type))
    data_loader = DataLoader(dataset, collate_fn=collate_fn, shuffle=True, num_workers=0, batch_size=hp.batch_size)
    device = torch.device("cuda" if use_cuda else "cpu")
    print("using device:{}".format(device))

    # build model, create optimizer
    model = build_model().to(device)
    optimizer = optim.Adam(model.parameters(),
Example #5
0
            break


if __name__ == "__main__":
    args = docopt(__doc__)
    #print("Command line args:\n", args)
    checkpoint_dir = args["--checkpoint-dir"]
    checkpoint_path = args["--checkpoint"]
    data_root = args["<data-root>"]

    # make dirs, load dataloader and set up device
    os.makedirs(checkpoint_dir, exist_ok=True)
    os.makedirs(os.path.join(checkpoint_dir, 'eval'), exist_ok=True)
    # TODO?
    dataset = AudiobookDataset(data_root,
                               axis_splits=21212,
                               axis_splits_offset=3)
    if hp.input_type == 'raw':
        collate_fn = raw_collate
    elif hp.input_type == 'mixture':
        collate_fn = raw_collate
    elif hp.input_type in ['bits', 'mulaw']:
        collate_fn = discrete_collate
    else:
        raise ValueError("input_type:{} not supported".format(hp.input_type))
    data_loader = DataLoader(dataset,
                             collate_fn=collate_fn,
                             shuffle=True,
                             num_workers=0,
                             batch_size=hp.batch_size)
    use_cuda = False