Example #1
0
def display_batch(X_batch, y_batch):
    '''
    This function displays on a window multiple images with their corresponding
    labels
    :param X_batch: Must be the batch image samples
    :param y_batch: Must be the batch categorical labels
    Returns the figure and the axis of the graph
    '''

    from dataset import CaptchaDataset
    dataset = CaptchaDataset()
    texts = dataset.labels_to_text(y_batch.argmax(axis=2))

    n = X_batch.shape[0]

    # Number of column subplots per row
    cols = ceil(sqrt(n))

    # Number of rows
    rows = n // cols
    if n % cols > 0:
        rows += 1

    # Create rows x cols subplots
    fig, ax = plt.subplots(rows, cols, figsize=(8, 8))

    for i in range(0, rows):
        for j in range(0, cols):
            if i < rows - 1 or n % cols == 0 or j < n % cols:
                index = i * cols + j
                plt.sca(ax[i, j])
                plt.imshow(X_batch[index, :, :, 0] * 255, cmap='gray')
                plt.xticks([])
                plt.yticks([])

                title = b''.join(texts[index]).decode()
                plt.title(title)
            else:
                ax[i, j].set_visible(False)


    plt.tight_layout()
    plt.show()

    return fig, ax
Example #2
0
    dataset = CaptchaDataset()
    X, y = dataset.X, dataset.y

    # Build the model
    model = OCRModel()

    # The next lines will show a bunch of captcha images & the predictions made by
    # the model

    indices = np.random.choice(np.arange(0, dataset.num_samples), size=9)
    X_batch, y_batch = next(iter(InputFlow(X, y, batch_size=9)))

    # Predict texts inside images
    texts = [
        ''.join([char.item().decode() for char in text])
        for text in dataset.labels_to_text(y_batch.argmax(axis=2))
    ]
    texts_pred = [
        ''.join([char.item().decode() for char in text])
        for text in model.predict_text(X_batch)
    ]

    rows, cols = X_batch.shape[0] // 3, 3

    fig, ax = plt.subplots(rows, cols, figsize=(20, 10))
    for i in range(0, rows):
        for j in range(0, cols):
            k = i * cols + j
            plt.sca(ax[i, j])

            plt.imshow(X_batch[k, :, :, 0], cmap='gray')