_SAMPLE_VIDEO_FRAMES = 24 _LABEL_MAP_PATH = '/home/pr606/python_vir/yuan/i3d-kinects/data/label_map.txt' with open(_LABEL_MAP_PATH) as f2: kinetics_classes = [x.strip() for x in f2.readlines()] validate_set = Dataset.DataSet(clip_length=_SAMPLE_VIDEO_FRAMES, sample_step=2, data_root='/home/pr606/Pictures/part_validate_kinetics', annotation_path='/home/pr606/python_vir/yuan/EXTRA_DATA/kinetics_part.json', spatial_transform=None, mode='validation', with_start=True, multi_sample=True ) validate_generator = Dataloader.DataGenerator(validate_set, batch_size=batch_size, ordered_file_path='/home/pr606/python_vir/yuan/EXTRA_DATA/names_in_order.csv') num_validate = validate_generator.__len__() # 1005 print("total validate data is :{}".format(num_validate)) inputs = tf.placeholder(shape=(batch_size,_SAMPLE_VIDEO_FRAMES,112,112,3),dtype=tf.float32) mean, variance = tf.nn.moments(inputs, axes=(0, 1, 2, 3), keep_dims=True, name="normalize_moments") Gamma = tf.constant(1.0, name="scale_factor", shape=mean.shape, dtype=tf.float32) Beta = tf.constant(0.0,name="offset_factor", shape=mean.shape, dtype=tf.float32) data = tf.nn.batch_normalization(inputs, mean, variance, offset=Beta, scale=Gamma, variance_epsilon=1e-3) '''
clip_length=_SAMPLE_VIDEO_FRAMES, sample_step=2, data_root='/home/pr606/Pictures/UCF101DATASET/ucf101', annotation_path= '/home/pr606/Pictures/dataset_annotations/ucf101_json_file/ucf101_01.json', spatial_transform=None, mode='train') validate_set = Dataset.DataSet( clip_length=_SAMPLE_VIDEO_FRAMES, sample_step=2, data_root='/home/pr606/Pictures/UCF101DATASET/ucf101', annotation_path= '/home/pr606/Pictures/dataset_annotations/ucf101_json_file/ucf101_01.json', spatial_transform=None, mode='validation') train_generator = Dataloader.DataGenerator(train_set, batch_size=batch_size) validate_generator = Dataloader.DataGenerator(validate_set, batch_size=batch_size) num_train = train_generator.__len__() num_validate = validate_generator.__len__() print("training data num is %d" % num_train) # 733 print("validation data num is %d" % num_validate) # 291 graph = tf.get_default_graph() with graph.as_default(): data = tf.placeholder(shape=(batch_size, _SAMPLE_VIDEO_FRAMES, _IMAGE_SIZE, _IMAGE_SIZE, 1), dtype=tf.float32) label = tf.placeholder(shape=(batch_size, NUM_CLASS), dtype=tf.int32) result = models(data, class_num=101, scope='at_model')