def data_loader(split_from, split_to, eval): if (params['dataset'] == "toy_sin_wave"): dataset = FolderDataset(toy_sin_wave=True) else: dataset = FolderDataset(path=path, overlap_len=overlap_len, q_levels=params['q_levels'], ratio_min=split_from, ratio_max=split_to) return DataLoader(dataset, batch_size=params['batch_size'], seq_len=params['seq_len'], overlap_len=overlap_len, shuffle=(not eval), drop_last=(not eval))
def data_loader(partition): dataset = FolderDataset(params['datasets_path'], path, cond_path, overlap_len, params['q_levels'], params['ulaw'], params['seq_len'], params['batch_size'], params['cond_dim'], params['cond_len'], params['norm_ind'], params['static_spk'], params['look_ahead'], partition) return DataLoader(dataset, batch_size=params['batch_size'], shuffle=False, drop_last=True, num_workers=2)
def data_loader(split_from, split_to, eval): dataset = FolderDataset(path, overlap_len, params['q_levels'], split_from, split_to) return DataLoader(dataset, batch_size=params['batch_size'], seq_len=params['seq_len'], overlap_len=overlap_len, shuffle=(not eval), drop_last=(not eval))
def data_loader(split_from, split_to, eval): dataset = FolderDataset( path, overlap_len, params['q_levels'], split_from, split_to ) l = dataset.__len__() dataset_filenames = [] for i in range(0, l): # print(dataset.get_filename(i)) dataset_filenames.append(dataset.get_filename(i)) dataloader = DataLoader( dataset, batch_size=params['batch_size'], seq_len=params['seq_len'], overlap_len=overlap_len, shuffle=(not eval), drop_last=(not eval) ) return dataloader, dataset_filenames
def data_loader(split_from, split_to, eval): dataset = FolderDataset(path_wav, path_spec, params['hindsight'], params['q_levels'], split_from, split_to ) return DataLoader( dataset, batch_size = params['batch_size'], seq_len = params['seq_len'] hindsight = params['hindsight'], shuffle=(not eval), drop_last=(not eval) )