def make_dataset_cuda(path, train_size, valid_size, randaug_params, mixup, cutmix):
    train_dir = os.path.join(nsml.DATASET_PATH, path, "train.lmdb")
    valid_dir = os.path.join(nsml.DATASET_PATH, path, "valid.lmdb")

    normalize = transforms.Normalize(
        mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
    )
    train_preprocess = transforms.Compose(
        [
            transforms.RandomResizedCrop(train_size, interpolation=Image.BICUBIC),
            transforms.RandomHorizontalFlip(),
        ]
    )
    train_postprocess = transforms.Compose(
        [RandAugment(**randaug_params), transforms.ToTensor(), normalize]
    )

    train_set = LMDBDataset(train_dir, train_preprocess)
    train_set = MixDataset(train_set, train_postprocess, mixup, cutmix)

    valid_preprocess = transforms.Compose(
        [
            transforms.Resize(valid_size + 32, interpolation=Image.BICUBIC),
            transforms.CenterCrop(valid_size),
            transforms.ToTensor(),
            normalize,
        ]
    )

    valid_set = LMDBDataset(valid_dir, valid_preprocess)

    return train_set, valid_set
def make_augment_dataset(path, train_transform, valid_transform):
    train_dir = os.path.join(nsml.DATASET_PATH, path, "train.lmdb")
    valid_dir = os.path.join(nsml.DATASET_PATH, path, "valid.lmdb")

    train_set = LMDBDataset(train_dir, train_transform)
    valid_set = LMDBDataset(valid_dir, valid_transform)

    return train_set, valid_set
Example #3
0
def load_datasets(args, experiment_name, num_workers, dataset):
    db_name = util_funcs.create_checkpoint_name(
        experiment_name, args.ckpt_epoch)[:-3] + '_dataset[{}]'.format(dataset)
    train_dataset = LMDBDataset(
        os.path.join('..', 'codes', 'train_codes', db_name), args.architecture)
    test_dataset = LMDBDataset(
        os.path.join('..', 'codes', 'test_codes', db_name), args.architecture)
    train_loader = DataLoader(train_dataset,
                              batch_size=1,
                              shuffle=True,
                              num_workers=num_workers,
                              drop_last=True)
    test_loader = DataLoader(test_dataset,
                             batch_size=1,
                             shuffle=True,
                             num_workers=num_workers,
                             drop_last=True)
    return test_loader, train_loader
Example #4
0
if opt.manual_seed is None:
    opt.manual_seed = random.randint(1, 10000)
random.seed(opt.manual_seed)
np.random.seed(opt.manual_seed)
torch.manual_seed(opt.manual_seed)

# Use cudnn
cudnn.benchmark = True

if torch.cuda.is_available() and not opt.cuda:
    print(
        "WARNING: You have a CUDA device, so you should probably run with --cuda"
    )

# Prepare training and testing data
train_datasets = [LMDBDataset(x) for x in opt.lmdb_paths]
train_dataset = torch.utils.data.ConcatDataset(train_datasets)

train_loader = torch.utils.data.DataLoader(train_dataset,
                                           batch_size=opt.batch_size,
                                           shuffle=True,
                                           sampler=None,
                                           num_workers=int(opt.workers),
                                           collate_fn=utils.AlignCollate(
                                               im_h=opt.img_h, im_w=opt.img_w))
print('Num of Training Images: %s' % len(train_dataset))

test_dataset = TestDataset(list_file=opt.val_list,
                           alphabet=alphabet,
                           transform=utils.ResizeNormalize(
                               (opt.img_w, opt.img_h)))
Example #5
0
    parser.add_argument('--n_res_channel', type=int, default=256)
    parser.add_argument('--n_out_res_block', type=int, default=0)
    parser.add_argument('--n_cond_res_block', type=int, default=3)
    parser.add_argument('--dropout', type=float, default=0.1)
    parser.add_argument('--amp', type=str, default='O0')
    parser.add_argument('--sched', type=str)
    parser.add_argument('--ckpt', type=str)
    parser.add_argument('path', type=str)

    args = parser.parse_args()

    print(args)

    device = 'cuda'

    dataset = LMDBDataset(args.path)
    loader = DataLoader(dataset,
                        batch_size=args.batch,
                        shuffle=True,
                        num_workers=4,
                        drop_last=True)

    ckpt = {}

    if args.ckpt is not None:
        ckpt = torch.load(args.ckpt)
        args = ckpt['args']

    if args.hier == 'top':
        model = PixelSNAIL(
            [32, 32],
def make_dataset(
    path, train_size, valid_size, randaug_params, mix_params, erasing, verbose=True
):
    train_dir = os.path.join(nsml.DATASET_PATH, path, "train.lmdb")
    valid_dir = os.path.join(nsml.DATASET_PATH, path, "valid.lmdb")

    normalize = transforms.Normalize(
        mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
    )

    transform_list = [
        transforms.RandomResizedCrop(train_size, interpolation=Image.BICUBIC),
        transforms.RandomHorizontalFlip(),
        RandAugment(**randaug_params),
        transforms.ToTensor(),
        normalize,
    ]

    if erasing > 0:
        transform_list += [
            RandomErasing(
                erasing, mode="pixel", max_count=1, num_splits=0, device="cpu"
            )
        ]

    if mix_params["mix_before_aug"]:
        preprocess = transform_list[:2]
        postprocess = transform_list[2:]

    else:
        preprocess = transform_list
        postprocess = []

    if verbose:
        logger = get_logger()

        log = f"""Transforms
Transform before Mixes:
{preprocess}
Mixes: mixup={mix_params["mixup"]}, cutmix={mix_params["cutmix"]}"""

        if mix_params["mix_before_aug"]:
            log += f"""
Transform after Mixes:
{postprocess}"""

        logger.info(log)

    train_preprocess = transforms.Compose(preprocess)
    train_postprocess = transforms.Compose(postprocess)

    train_set = LMDBDataset(train_dir, train_preprocess)
    train_set = MixDataset(
        train_set, train_postprocess, mix_params["mixup"], mix_params["cutmix"]
    )

    valid_preprocess = transforms.Compose(
        [
            transforms.Resize(valid_size + 32, interpolation=Image.BICUBIC),
            transforms.CenterCrop(valid_size),
            transforms.ToTensor(),
            normalize,
        ]
    )

    valid_set = LMDBDataset(valid_dir, valid_preprocess)

    return train_set, valid_set
Example #7
0
parser.add_argument('--image_w',
                    default=100,
                    help='the width of the input image to the network')
parser.add_argument('--nh', default=256, help='size of the lstm hidden state')
parser.add_argument('--batch_size', default=4, help='batch size')
parser.add_argument('--nepoch', default=100, help='number of epoch')
option = parser.parse_args()

if not os.path.exists('model'):
    os.mkdir('model')

cudnn.benchmark = True

trainset = LMDBDataset(option.trainset_path,
                       transform=transforms.Compose([
                           transforms.Resize((option.image_h, option.image_w)),
                           transforms.ToTensor()
                       ]))
trainset_dataloader = DataLoader(trainset,
                                 batch_size=option.batch_size,
                                 shuffle=True)
validationset = LMDBDataset(option.validationset_path,
                            transform=transforms.Compose([
                                transforms.Resize(
                                    (option.image_h, option.image_w)),
                                transforms.ToTensor()
                            ]))
validationset_dataloader = DataLoader(validationset,
                                      batch_size=option.batch_size,
                                      shuffle=True)
    parser.add_argument('--n_out_res_block', type=int, default=0)
    parser.add_argument('--n_cond_res_block', type=int, default=3)
    parser.add_argument('--dropout', type=float, default=0.1)
    parser.add_argument('--amp', type=str, default='O0')
    parser.add_argument('--device', type=str, default='cuda')
    parser.add_argument('--sched', type=str)
    parser.add_argument('--ckpt', type=str)
    parser.add_argument('path', type=str)

    args = parser.parse_args()

    print(args)

    device = args.device

    dataset = LMDBDataset(f"lmdb/{args.path}")
    loader = DataLoader(
        dataset,
        batch_size=args.batch,
        shuffle=True,
        num_workers=4,
        drop_last=True)

    ckpt = {}

    if args.ckpt is not None:
        ckpt = torch.load(args.ckpt)
        args = ckpt['args']

    if args.hier == 'top':
        model = PixelSNAIL(