Example #1
0
def test_train():
    device = torch.device(
        'cuda') if torch.cuda.is_available() else torch.device('cpu')
    print(device)

    model = maskrcnn_resnet50_fpn(pretrained=True)
    in_features = model.roi_heads.box_predictor.cls_score.in_features
    model.roi_heads.box_predictor = FastRCNNPredictor(in_features, 7)
    in_features_mask = model.roi_heads.mask_predictor.conv5_mask.in_channels
    hidden_layer = 256
    model.roi_heads.mask_predictor = MaskRCNNPredictor(in_features_mask,
                                                       hidden_layer, 7)

    model.load_state_dict(torch.load("./mask_rcnn_2.pth"))
    model.to(device)
    model.train()

    data = SeashipDataset("../SeaShips", None)

    imgs = []
    targets = []

    for i in range(2):
        img, target = data.__getitem__(i)
        imgs.append(F.to_tensor(img).to(device))
        target = {k: v.to(device) for k, v in target.items()}
        targets.append(target)

    targets.append(target)
    targets = [{k: v.to(device) for k, v in t.items()} for t in targets]
    result = model.forward(imgs, targets)
Example #2
0
def test():
    os.environ["CUDA_VISIBLE_DEVICES"] = "2"
    device = torch.device(
        'cuda') if torch.cuda.is_available() else torch.device('cpu')

    model = maskrcnn_resnet50_fpn(pretrained=True)
    in_features = model.roi_heads.box_predictor.cls_score.in_features
    model.roi_heads.box_predictor = FastRCNNPredictor(in_features, 7)
    in_features_mask = model.roi_heads.mask_predictor.conv5_mask.in_channels
    hidden_layer = 256
    model.roi_heads.mask_predictor = MaskRCNNPredictor(in_features_mask,
                                                       hidden_layer, 7)

    model.load_state_dict(torch.load("../model/mask_rcnn_5_2_002.pth"))
    model.to(device)
    model.eval()

    data = SeashipDataset("../../SeaShips", None)
    evaluator = Evaluator(7, 0.8)

    with open("./test_data", "r") as f:
        lines = f.readlines()
        test_list = [int(line) for line in lines]
    print(len(test_list))

    result_list = []
    target_list = []
    batch_size = 2
    for idx in range(0, len(test_list), batch_size):
        imgs = []
        targets = []
        try:
            for i in range(idx, idx + batch_size):
                img, target = data.__getitem__(test_list[i] - 1)
                imgs.append(F.to_tensor(img).to(device))
                target = {k: v.to(device) for k, v in target.items()}
                targets.append(target)

            results = model.forward(imgs)

            #result_list.extend(results)
            #target_list.extend(targets)
            for result, target in zip(results, targets):
                target = {k: v.cpu().detach() for k, v in target.items()}
                result = {k: v.cpu().detach() for k, v in result.items()}
                result_list.append(result)
                target_list.append(target)
                #evaluator.get_label(result, target)
        except:
            print(str(traceback.format_exc()))

        if idx % 12 == 0:
            print(idx)

    evaluator.get_ap(result_list, target_list)
Example #3
0
def res_mask():
    os.environ["CUDA_VISIBLE_DEVICES"] = "3"
    device = torch.device(
        'cuda') if torch.cuda.is_available() else torch.device('cpu')
    print(device)

    model = maskrcnn_resnet50_fpn(pretrained=True)
    in_features = model.roi_heads.box_predictor.cls_score.in_features
    model.roi_heads.box_predictor = FastRCNNPredictor(in_features, 7)
    in_features_mask = model.roi_heads.mask_predictor.conv5_mask.in_channels
    hidden_layer = 256
    model.roi_heads.mask_predictor = MaskRCNNPredictor(in_features_mask,
                                                       hidden_layer, 7)

    model.load_state_dict(torch.load("../model/mask_rcnn_10_2_005.pth"))
    model.to(device)
    model.eval()

    data = SeashipDataset("../SeaShips", None)

    with open("./train_data", "r") as f:
        lines = f.readlines()
        train_list = [int(line) for line in lines]

    print(len(train_list))

    batch_size = 2

    for idx in range(0, len(train_list), batch_size):
        imgs = []
        for i in range(idx, idx + batch_size):
            img, target = data.__getitem__(train_list[i])
            imgs.append(F.to_tensor(img).to(device))

        original_image_sizes = [img.shape[-2:] for img in imgs]
        result = model.forward(imgs)

        for j, res in enumerate(result):
            scores = res['scores'].cpu().detach().numpy()
            masks = res["masks"].cpu()
            index = np.where(scores > 0.9)  #只要9分以上的
            masks = masks[index]
            masks = torch.where(masks > 0.5, torch.full_like(masks, 1),
                                torch.full_like(masks, 0))
            m = torch.zeros(original_image_sizes[0])
            for mask in masks:
                m += mask[0]
            m = torch.where(m > 0.5, torch.full_like(m, 1),
                            torch.full_like(m, 0))
            img_mask = TensorToPIL(m)
            mask_name = "{:0>6d}.png".format(idx + j + 1)
            path = os.path.join("./res_mask/", mask_name)
            img_mask.save(path)
            print(path)
Example #4
0
def test_one(idx):
    device = torch.device(
        'cuda') if torch.cuda.is_available() else torch.device('cpu')

    model = maskrcnn_resnet50_fpn(pretrained=True)
    in_features = model.roi_heads.box_predictor.cls_score.in_features
    model.roi_heads.box_predictor = FastRCNNPredictor(in_features, 7)
    in_features_mask = model.roi_heads.mask_predictor.conv5_mask.in_channels
    hidden_layer = 256
    model.roi_heads.mask_predictor = MaskRCNNPredictor(in_features_mask,
                                                       hidden_layer, 7)

    model.load_state_dict(torch.load("../model/mask_rcnn_5_2_002.pth"))
    model.to(device)
    model.eval()

    data = SeashipDataset("../../SeaShips", None)
    evaluator = Evaluator(7, 0.5)
    targets = []
    image, target = data.__getitem__(idx)
    img_var = [F.to_tensor(image).to(device)]
    original_image_sizes = [img.shape[-2:] for img in img_var]
    targets.append(target)
    targets = [{k: v.to(device) for k, v in t.items()} for t in targets]
    result = model.forward(img_var)
    #print(target['labels'])
    #print(result)
    evaluator.get_label(result[0], target)
    boxes = result[0]['boxes'].cpu().detach().numpy()
    scores = result[0]['scores'].cpu().detach().numpy()
    masks = result[0]['masks'].cpu()

    index = np.where(scores > 0.5)
    boxes = boxes[index]
    masks = masks[index]
    masks = torch.where(masks > 0.5, torch.full_like(masks, 1),
                        torch.full_like(masks, 0))
    m = torch.zeros(original_image_sizes[0])
    for mask in masks:
        m += mask[0]
    m = torch.where(m > 0.5, torch.full_like(m, 1), torch.full_like(m, 0))

    image = image.convert("RGBA")
    mask = TensorToPIL(m)
    mask.convert("RGBA")
    drawRectangle(image, boxes)
    image = drawMasks(image, mask)

    res_name = "../result/test{:0>6d}.png".format(idx)
    image.save(res_name)
Example #5
0
        boxes = boxes.astype(np.int32)
        img = cv2.imread(des_img_path)
        img = DrawRect(img, boxes)
        cv2.imwrite(save_path, img)

        num += 1
        print(save_path)


if __name__ == "__main__":

    img_path = "../../SeaShips/JPEGImages/001223.jpg"
    save_src_path = "../per_data/001223.jpg"
    save_des_path = "../per_data/001224.jpg"
    anno_path = "../../SeaShips/Annotations/001223.xml"
    data = SeashipDataset("../../SeaShips", None)
    #img, anno = data.getitem2(1222)
    #boxes = anno['boxes']
    boxes = readxml(anno_path)
    print(boxes)

    img = cv2.imread(img_path)
    cv2.imwrite(save_src_path, img)

    img, boxes = horizontal_flip(img, boxes)
    #img = DrawRect(img, boxes)
    cv2.imwrite(save_des_path, img)
    '''

    img, boxes = rotate(img, boxes, 15)
    
Example #6
0
                        optimizer,
                        data_loader,
                        device,
                        epoch,
                        print_freq=10)
        lr_scheduler.step()
        evaluate(model, data_loader_test, device=device)

    print("That's it!")


if __name__ == '__main__':
    device = torch.device(
        'cuda') if torch.cuda.is_available() else torch.device('cpu')
    num_classes = 7
    dataset = SeashipDataset('../', get_transform(train=True))
    dataset_test = SeashipDataset('../', get_transform(train=False))

    indices = torch.randperm(len(dataset)).tolist()
    dataset = torch.utils.data.Subset(dataset, indices[:-50])
    dataset_test = torch.utils.data.Subset(dataset_test, indices[-50:])

    data_loader = torch.utils.data.DataLoader(dataset,
                                              batch_size=2,
                                              shuffle=True,
                                              num_workers=4,
                                              collate_fn=utils.collate_fn)
    data_loader_test = torch.utils.data.DataLoader(dataset_test,
                                                   batch_size=1,
                                                   shuffle=False,
                                                   num_workers=4,
Example #7
0
def weakly_supervision_train():
    device = torch.device(
        'cuda') if torch.cuda.is_available() else torch.device('cpu')
    print(device)

    model = maskrcnn_resnet50_fpn(pretrained=True)
    in_features = model.roi_heads.box_predictor.cls_score.in_features
    model.roi_heads.box_predictor = FastRCNNPredictor(in_features, 7)
    in_features_mask = model.roi_heads.mask_predictor.conv5_mask.in_channels
    hidden_layer = 256
    model.roi_heads.mask_predictor = MaskRCNNPredictor(in_features_mask,
                                                       hidden_layer, 7)

    model.load_state_dict(
        torch.load("../model/mask_rcnn_5_2_002.pth"))  #加载已训练的模型
    model.to(device)
    model.open_weakly_supervision_train()  #打开弱监督训练方式

    for name, params in model.named_parameters():
        if 'mask' not in name:  #冻结mask分支以外的参数
            params.requires_grad = False

    optimizer = torch.optim.SGD(model.parameters(),
                                lr=0.005,
                                momentum=0.9,
                                weight_decay=0.0005)
    num_epochs = 5
    batch_size = 2

    loss_sum = 0

    data = SeashipDataset("../../SeaShips", None)

    with open("./train_data", "r") as f:
        lines = f.readlines()
        train_list = [int(line) for line in lines]

    print(len(train_list))

    for epoch in range(num_epochs):
        for idx in range(0, len(train_list), batch_size):
            try:
                imgs = []
                targets = []
                for i in range(idx, idx + batch_size):
                    img, target = data.getitem2(train_list[i] - 1, epoch)
                    imgs.append(F.to_tensor(img).to(device))
                    target = {k: v.to(device) for k, v in target.items()}
                    targets.append(target)

                original_image_sizes = [img.shape[-2:] for img in imgs]
                loss_dict, result = model.forward(imgs, targets)
                losses = sum(loss for loss in loss_dict.values())
                loss_sum += losses

                #print(result)

                optimizer.zero_grad()
                losses.backward()
                optimizer.step()

                for j, res in enumerate(result):
                    scores = res['scores'].cpu().detach().numpy()
                    masks = res["masks"].cpu()
                    #print(masks[0].shape)
                    index = np.where(scores > 0.9)  #只要9分以上的
                    masks = masks[index]
                    masks = torch.where(masks > 0.5, torch.full_like(masks, 1),
                                        torch.full_like(masks, 0))
                    m = torch.zeros(original_image_sizes[0])
                    for mask in masks:
                        m += mask[0]
                    m = torch.where(m > 0.5, torch.full_like(m, 1),
                                    torch.full_like(m, 0))
                    img_mask = TensorToPIL(m)
                    data.updatemask(idx + j, img_mask, epoch)
            except:
                logger.error(str(traceback.format_exc()))

            if idx % 10 == 0:
                #print("[%d]rpn_loss: %f" %(idx, loss_sum))
                logger.debug("[%d]total_loss: %f" % (idx, loss_sum))
                loss_sum = 0

    torch.save(model.state_dict(), "./mask_rcnn_weakly_5_2_002.pth")
Example #8
0
def train_mask():
    os.environ["CUDA_VISIBLE_DEVICES"] = "2"
    device = torch.device(
        'cuda') if torch.cuda.is_available() else torch.device('cpu')
    print(device)

    model = maskrcnn_resnet50_fpn(pretrained=True)
    in_features = model.roi_heads.box_predictor.cls_score.in_features
    model.roi_heads.box_predictor = FastRCNNPredictor(in_features, 7)
    in_features_mask = model.roi_heads.mask_predictor.conv5_mask.in_channels
    hidden_layer = 256
    model.roi_heads.mask_predictor = MaskRCNNPredictor(in_features_mask,
                                                       hidden_layer, 7)

    model.to(device)
    model.train()

    data = SeashipDataset("../../SeaShips", None)

    optimizer = torch.optim.SGD(model.parameters(),
                                lr=0.002,
                                momentum=0.9,
                                weight_decay=0.0005)
    lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer,
                                                   step_size=3,
                                                   gamma=0.1)
    num_epochs = 5
    batch_size = 2

    loss_sum = 0
    loss_classifier = 0
    loss_box_reg = 0
    loss_mask = 0

    with open("./train_data", "r") as f:
        lines = f.readlines()
        train_list = [int(line) for line in lines]

    print(len(train_list))

    for epoch in range(num_epochs):
        lr_scheduler = None
        if epoch == 0:
            warmup_factor = 1. / 1000
            warmup_iters = min(1000, 5000 - 1)
            lr_scheduler = utils.warmup_lr_scheduler(optimizer, warmup_iters,
                                                     warmup_factor)

        for idx in range(0, len(train_list), batch_size):
            try:
                imgs = []
                targets = []
                for i in range(idx, idx + batch_size):
                    img, target = data.__getitem__(train_list[i] - 1)
                    imgs.append(F.to_tensor(img).to(device))
                    target = {k: v.to(device) for k, v in target.items()}
                    targets.append(target)

                loss_dict = model.forward(imgs, targets)
                losses = sum(loss for loss in loss_dict.values())
                loss_sum += losses

                #loss_classifier += loss_dict['loss_classifier'].values()
                #loss_box_reg += loss_dict['loss_box_reg'].values()
                #loss_mask += loss_dict['loss_mask'].values()

                optimizer.zero_grad()
                losses.backward()
                optimizer.step()

                if lr_scheduler is not None:
                    lr_scheduler.step()
            except:
                logger.error(str(traceback.format_exc()))

            if idx % 12 == 0:
                logger.debug("[%d]total_loss: %f" % (idx, loss_sum))
                #logger.debug("[%d]loss: %f loss_classifier: %f loss_box_reg: %f loss_mask: %f" %(idx, loss_sum, loss_classifier, loss_box_reg, loss_mask))
                loss_sum = 0
                #loss_classifier = 0
                #loss_box_reg = 0
                #loss_mask = 0

    torch.save(model.state_dict(), "../model/mask_rcnn_5_2_002.pth")
    logger.debug("train successfully!")\
Example #9
0
def test_mask():
    device = torch.device(
        'cuda') if torch.cuda.is_available() else torch.device('cpu')
    print(device)

    model = maskrcnn_resnet50_fpn(pretrained=True)
    in_features = model.roi_heads.box_predictor.cls_score.in_features
    model.roi_heads.box_predictor = FastRCNNPredictor(in_features, 7)
    in_features_mask = model.roi_heads.mask_predictor.conv5_mask.in_channels
    hidden_layer = 256
    model.roi_heads.mask_predictor = MaskRCNNPredictor(in_features_mask,
                                                       hidden_layer, 7)

    model.load_state_dict(torch.load("./mask_rcnn_2.pth"))
    model.to(device)
    #model.train()
    model.eval()
    data = SeashipDataset("../SeaShips", None)

    targets = []

    image, target = data.__getitem__(1888)
    img_var = [F.to_tensor(image).to(device)]
    original_image_sizes = [img.shape[-2:] for img in img_var]
    targets.append(target)
    targets = [{k: v.to(device) for k, v in t.items()} for t in targets]
    #result = model.forward(img_var, targets)
    result = model.forward(img_var)
    '''
    batch_size = 2

    label_struct = dict()

    for idx in range(5000,7000,batch_size):
        imgs = []
        targets = []
        for i in range(idx, idx+batch_size):
            img, target = data.__getitem__(i)
            imgs.append(F.to_tensor(img).to(device))
            target = {k : v.to(device) for k, v in target.items()}
            targets.append(target)
            
        result = model.forward(imgs)

        for res in result:
            bbox

    '''

    print(result)
    print(target['labels'])
    boxes = result[0]['boxes'].cpu().detach().numpy()
    scores = result[0]['scores'].cpu().detach().numpy()
    masks = result[0]['masks'].cpu()

    index = np.where(scores > 0.9)
    boxes = boxes[index]
    masks = masks[index]
    masks = torch.where(masks > 0.5, torch.full_like(masks, 1),
                        torch.full_like(masks, 0))
    m = torch.zeros(original_image_sizes[0])
    print(m.shape)
    for mask in masks:
        m += mask[0]
    m = torch.where(m > 0.5, torch.full_like(m, 1), torch.full_like(m, 0))
    img_mask = TensorToPIL(m)
    img_mask.save("./result/res11.png")
    #masks[pos] = 1
    #print(boxes)
    #print(masks[0][0][int(boxes[0][1]):int(boxes[0][3]),int(boxes[0][0]):int(boxes[0][2])])
    '''