Example #1
0
def gaus_prefilter():
    traindataset = Train_dataset(1)
    XT_total = traindataset.data_true(654)
    volume_real = XT_total[0][:, :, :, np.newaxis]
    filename_real = os.path.join(DEFAULT_SAVE_PATH_PREDICTIONS, 'real.nii.gz')
    img_volume_gen = nib.Nifti1Image(volume_real, np.eye(4))
    img_volume_gen.to_filename(filename_real)
    x_generator = gaussian_filter(volume_real, sigma=1)
    x_generator = zoom(x_generator, [0.5, 0.5, 0.5, 1], prefilter=True)
    filename_gen = os.path.join(DEFAULT_SAVE_PATH_PREDICTIONS, 'gaus_prefilter_ds2.nii.gz')
    img_volume_gen = nib.Nifti1Image(x_generator, np.eye(4))
    img_volume_gen.to_filename(filename_gen)
    x_generator = zoom(x_generator, [0.25, 0.25, 0.25, 1], prefilter=True)
    filename_gen = os.path.join(DEFAULT_SAVE_PATH_PREDICTIONS, 'gaus_prefilter_ds4.nii.gz')
    img_volume_gen = nib.Nifti1Image(x_generator, np.eye(4))
    img_volume_gen.to_filename(filename_gen)
Example #2
0
def evaluate(img_width, img_height, img_depth, upsampling_factor):

    # dataset & variables
    traindataset = Train_dataset(1)
    iterations = math.ceil(
        (len(traindataset.subject_list) *
         0.2))  # 817 subjects total. De 0 a 654 training. De 654 a 817 test.
    print(len(traindataset.subject_list))
    print(iterations)
    totalpsnr = 0
    totalssim = 0
    array_psnr = np.empty(iterations)
    array_ssim = np.empty(iterations)
    batch_size = 1
    div_patches = 4
    num_patches = traindataset.num_patches
    img_width = img_width  # 224
    img_height = img_height  # 224
    img_depth = img_depth  # 152

    # define model
    t_input_gen = tf.placeholder('float32', [1, None, None, None, 1],
                                 name='t_image_input_to_SRGAN_generator')
    srgan_network = generator(t_input_gen,
                              kernel=3,
                              nb=6,
                              upscaling_factor=upsampling_factor,
                              is_train=False,
                              reuse=False,
                              img_width=img_width,
                              img_height=img_height,
                              img_depth=img_depth)

    # restore g
    sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True,
                                            log_device_placement=False))

    saver = tf.train.Saver(
        tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope="SRGAN_g"))
    saver.restore(
        sess,
        tf.train.latest_checkpoint(
            '/work/isanchez/g/ds4-gdl-lrdecay/subpixel'))

    for i in range(0, iterations):
        # extract volumes
        xt_total = traindataset.data_true(
            654 + i)  # [[self.batch_size, 224, 224, 152]]
        xt_mask = traindataset.mask(654 + i)
        xg_generated = np.empty([1, 224, 224, 152, 1])
        normfactor = (np.amax(xt_total[0])) / 2
        x_generator = ((xt_total[0] - normfactor) / normfactor)
        res = 1 / upsampling_factor
        x_generator = x_generator[:, :, :, np.newaxis]
        x_generator = zoom(x_generator, [res, res, res, 1])
        # x_generator = gaussian_filter(x_generator, sigma=1)
        xg_generated[0] = sess.run(srgan_network.outputs,
                                   {t_input_gen: x_generator[np.newaxis, :]})
        xg_generated[0] = ((xg_generated[0] + 1) * normfactor)
        volume_real = xt_total[0]
        volume_real = volume_real[:, :, :, np.newaxis]
        volume_generated = xg_generated[0]
        volume_mask = aggregate(xt_mask)
        # compute metrics
        max_gen = np.amax(volume_generated)
        max_real = np.amax(volume_real)
        if max_gen > max_real:
            val_max = max_gen
        else:
            val_max = max_real
        min_gen = np.amin(volume_generated)
        min_real = np.amin(volume_real)
        if min_gen < min_real:
            val_min = min_gen
        else:
            val_min = min_real
        val_psnr = psnr(np.multiply(volume_real, volume_mask),
                        np.multiply(volume_generated, volume_mask),
                        dynamic_range=val_max - val_min)
        array_psnr[i] = val_psnr

        totalpsnr += val_psnr
        val_ssim = ssim(np.multiply(volume_real, volume_mask),
                        np.multiply(volume_generated, volume_mask),
                        dynamic_range=val_max - val_min,
                        multichannel=True)
        array_ssim[i] = val_ssim
        totalssim += val_ssim
        print(val_psnr)
        print(val_ssim)
        # save volumes
        filename_gen = os.path.join(args.path_volumes, str(i) + 'gen.nii.gz')
        img_volume_gen = nib.Nifti1Image(volume_generated, np.eye(4))
        img_volume_gen.to_filename(filename_gen)
        filename_real = os.path.join(args.path_volumes, str(i) + 'real.nii.gz')
        img_volume_real = nib.Nifti1Image(volume_real, np.eye(4))
        img_volume_real.to_filename(filename_real)

    print('{}{}'.format('Mean PSNR: ', array_psnr.mean()))
    print('{}{}'.format('Mean SSIM: ', array_ssim.mean()))
    print('{}{}'.format('Variance PSNR: ', array_psnr.var()))
    print('{}{}'.format('Variance SSIM: ', array_ssim.var()))
    print('{}{}'.format('Max PSNR: ', array_psnr.max()))
    print('{}{}'.format('Min PSNR: ', array_psnr.min()))
    print('{}{}'.format('Max SSIM: ', array_ssim.max()))
    print('{}{}'.format('Min SSIM: ', array_ssim.min()))
def interpolate():
    traindataset = Train_dataset(1)
    iterations = math.ceil((len(traindataset.subject_list) * 0.2))
    # 817 subjects total. De 0 a 654 training. De 654 a 817 test.
    totalpsnr = 0
    totalssim = 0
    array_psnr = np.empty(iterations)
    array_ssim = np.empty(iterations)
    batch_size = 1
    div_patches = 4
    num_patches = traindataset.num_patches
    img_width = 32  # 64
    img_height = 32  # 64
    img_depth = 23  # 46

    for i in range(0, iterations):
        XT_total = traindataset.data_true(654 + i)
        XT_mask = traindataset.mask(654 + i)
        volume_real = XT_total[0][:, :, :, np.newaxis]
        #volume_real_down = zoom(gaussian_filter(volume_real, sigma=1), [0.5, 0.5, 0.5, 1], prefilter=False, order=1)
        volume_real_down = zoom(volume_real, [0.5, 0.5, 0.5, 1])
        volume_generated = zoom(volume_real_down, [2, 2, 2, 1])
        #volume_generated = volume_generated[:, :, :, np.newaxis]
        #volume_real = XT_total[0][:, :, :, np.newaxis]
        volume_mask = aggregate(XT_mask)
        # compute metrics
        max_gen = np.amax(volume_generated)
        max_real = np.amax(volume_real)
        if max_gen > max_real:
            max = max_gen
        else:
            max = max_real
        min_gen = np.amin(volume_generated)
        min_real = np.amin(volume_real)
        if min_gen < min_real:
            min = min_gen
        else:
            min = min_real
        val_psnr = psnr(np.multiply(volume_real, volume_mask),
                        np.multiply(volume_generated, volume_mask),
                        dynamic_range=max - min)
        # val_psnr = psnr(volume_real, volume_generated,
        #                 dynamic_range=max - min)
        array_psnr[i] = val_psnr

        totalpsnr += val_psnr
        val_ssim = ssim(np.multiply(volume_real, volume_mask),
                        np.multiply(volume_generated, volume_mask),
                        dynamic_range=max - min,
                        multichannel=True)
        array_ssim[i] = val_ssim
        totalssim += val_ssim
        print(val_psnr)
        print(val_ssim)
        #save volumes
        filename_gen = os.path.join(DEFAULT_SAVE_PATH_PREDICTIONS,
                                    str(i) + 'gen.nii.gz')
        img_volume_gen = nib.Nifti1Image(volume_generated, np.eye(4))
        img_volume_gen.to_filename(filename_gen)
        filename_real = os.path.join(DEFAULT_SAVE_PATH_PREDICTIONS,
                                     str(i) + 'real.nii.gz')
        img_volume_real = nib.Nifti1Image(volume_real, np.eye(4))
        img_volume_real.to_filename(filename_real)
        filename_down = os.path.join(DEFAULT_SAVE_PATH_PREDICTIONS,
                                     str(i) + 'down.nii.gz')
        img_volume_down = nib.Nifti1Image(volume_real_down, np.eye(4))
        img_volume_down.to_filename(filename_down)
    return array_psnr, array_ssim