Example #1
0
File: kg.py Project: vasu0403/aqa
    for fn in os.listdir(out_dir):
        chunk_in_fn = os.path.join(out_dir, fn)
        with open(chunk_in_fn, 'rb') as fd:
            o = pickle.load(fd)
            output.update(o)


if __name__ == '__main__':
    parser = argparse.ArgumentParser('Generate knowledge graphs from OIE6 output.')
    parser.add_argument('--dataset', default='hotpot_qa', help='trivia_qa or hotpot_qa')
    parser.add_argument(
        '-debug', default=False, action='store_true', help='If true, run on tiny portion of train dataset')
    parser.add_argument('--dtypes', default=None)
    args = parser.parse_args()

    dataset = dataset_factory(args.dataset)
    print('Loading Spacy...')
    spacy_tokenizer = spacy.load('en_core_web_lg', disable=['parser', 'ner', 'tagger', 'textcat'])
    chunker = spacy.load('en_core_web_lg')

    data_dir = os.path.join('..', 'data', dataset.name)
    print('Loading ALBERT...')

    #  getting the list of GPUs available
    if torch.cuda.is_available():
        DEVICE = torch.device('cuda')
        device_ids = list(range(torch.cuda.device_count()))
        gpus = len(device_ids)
        print('GPU detected')
    else:
        DEVICE = torch.device("cpu")
Example #2
0
 def __init__(self, dataset_str, dtype):
     self.dataset = dataset_factory(dataset_str)[dtype]
     kg_fn = os.path.join('..', 'data', dataset_str,
                          'kg_{}.pk'.format(dtype))
     with open(kg_fn, 'rb') as fd:
         self.kgs = pickle.load(fd)