def __init__(self):

        goods_dataset = GoodsDataset("dataset-181018.list",
                                     "dataset-181018.labels",
                                     settings.IMAGE_SIZE, settings.train_batch,
                                     settings.valid_batch, settings.multiply,
                                     settings.valid_percentage)
        train_set = goods_dataset.get_train_dataset()
        valid_set = goods_dataset.get_valid_dataset()

        input_tensor = keras.layers.Input(shape=(IMAGE_SIZE[0], IMAGE_SIZE[1],
                                                 3))
        base_model = InceptionV3(weights='imagenet',
                                 include_top=False,
                                 pooling='avg',
                                 input_tensor=input_tensor)
        output_layer_number = 248
        intermediate_layer_model = keras.Model(
            inputs=base_model.input,
            outputs=base_model.layers[output_layer_number].output)

        def _intermediate_processing(images, labels):
            images = intermediate_layer_model.predict(images, steps=77)
            return images, labels

        self.train_set = train_set.map(
            _intermediate_processing)  #, num_parallel_calls=8)
        self.valid_set = valid_set.map(
            _intermediate_processing)  #, num_parallel_calls=8)
Example #2
0
    keras.callbacks.ModelCheckpoint(
        "./checkpoints/FINE_TUNE_MODEL_4_DIRECT_inceptionv3-181018-{epoch:02d}-{acc:.3f}-{val_acc:.3f}[{val_top_6:.3f}].hdf5",
        save_best_only=True,
        monitor='val_top_6',
        mode='max'),
    keras.callbacks.TensorBoard(
        log_dir='./tensorboard-incv4',
        write_images=True,
    )
]

goods_dataset = GoodsDataset("dataset-181018.list", "dataset-181018.labels",
                             settings.IMAGE_SIZE, settings.train_batch,
                             settings.valid_batch, settings.multiply,
                             settings.valid_percentage)
train_dataset = goods_dataset.get_train_dataset()
valid_dataset = goods_dataset.get_valid_dataset()

results = model.evaluate(
    goods_dataset.get_images_for_label(94).batch(16).repeat(), steps=6)
print(results)

model.fit(
    train_dataset.prefetch(2).repeat(),
    callbacks=callbacks,
    epochs=30,
    steps_per_epoch=1157,
    validation_data=valid_dataset.repeat(),
    validation_steps=77,
)
"""