Example #1
0
def datasetClassExampleImages(dataset_name,
                              class_name,
                              number_of_images=12,
                              api=None):
    pairs_folder_name = 'pairs_' + dataset_name
    dataset_specific_api_name = api or dataset_name
    dataset_specific_api = getDatasetSpecificApi(dataset_specific_api_name)
    pairs = Pairs(pairs_folder_name,
                  get_classes_function=dataset_specific_api.getClasses)
    showFromClass(pairs, class_name, number_of_images, 1, number_of_images)
Example #2
0
def datasetClassesExampleImages(dataset_name, number_of_images=12, api=None):
    pairs_folder_name = 'pairs_' + dataset_name
    dataset_specific_api_name = api or dataset_name
    dataset_specific_api = getDatasetSpecificApi(dataset_specific_api_name)
    pairs = Pairs(pairs_folder_name,
                  get_classes_function=dataset_specific_api.getClasses)
    classes = pairs.getClasses()
    for class_name in classes:
        print('Примеры изображений из класса "' + class_name + '":')
        showFromClass(pairs,
                      class_name,
                      number_of_images,
                      rows=1,
                      columns=number_of_images)
Example #3
0
def datasetMetrics(dataset_name,
                   metric_name,
                   log_plots=False,
                   api=None,
                   examples_amount=0,
                   rows=None,
                   columns=None,
                   vertical=True,
                   max_columns=20):
    examples_amount = None if (examples_amount == 'all') else examples_amount
    report_file_name = 'on_flow_by_classes_' + dataset_name + '_test.json'
    report = load_json_from_file(report_file_name)
    pairs_folder_name = 'pairs_' + dataset_name
    dataset_specific_api_name = api or dataset_name
    dataset_specific_api = getDatasetSpecificApi(dataset_specific_api_name)
    if (examples_amount == None) or (examples_amount > 0):
        pairs = Pairs(pairs_folder_name,
                      get_classes_function=dataset_specific_api.getClasses)
    for filter_as_string in report:
        print('Для изображений',
              presentFilter(json.loads(filter_as_string)) + ':')
        report_for_filter = report[filter_as_string]
        metrics_for_class = report_for_filter[metric_name]
        for metric in metrics_for_class:
            if metric['name'] == 'distribution':
                print('Распределение:')
                preprocess = (lambda x: log(x)
                              if x != 0 else 0) if log_plots else (lambda x: x)
                if len(metric['value']) > max_columns:
                    scaleFactor = ceil(len(metric['value']) / max_columns)
                else:
                    scaleFactor = 1
                plotDistribution(metric['value'],
                                 preprocess,
                                 vertical=vertical,
                                 scaleFactor=scaleFactor)
                for interval in metric['value']:
                    if (examples_amount == None) or (examples_amount > 0):
                        if 'examples' in interval:
                            print('Примеры для интервала с', interval['from'],
                                  'до', interval['to'], ':')
                            if len(interval['examples'][0]) == 1:
                                example_pairs = [
                                    pairs[example[0]] for example in
                                    interval['examples'][:examples_amount]
                                ]
                                showPairsImages(example_pairs)
                            else:
                                for example in interval[
                                        'examples'][:examples_amount]:
                                    example_pairs = [pairs[i] for i in example]
                                    showPairsImages(example_pairs)
            elif (metric['name'] == 'kmeans') and ((examples_amount == None) or
                                                   (examples_amount > 0)):
                print('Результаты кластеризации на', len(metric['value']),
                      'кластер' + properEnding(len(metric['value'])) + ':')
                for cluster_id in metric['value']:
                    print('Примеры изображений из кластера ' + cluster_id +
                          ':')
                    example_pairs = [
                        pairs[object_id] for object_id in metric['value']
                        [cluster_id][:examples_amount]
                    ]
                    if len(example_pairs) > 0:
                        printPairsPaths(example_pairs)
            elif metric['name'] == 'mean':
                if metric_name == 'mean_histogram':
                    plt.hist(metric['value'], bins=len(metric['value']))
                    plt.show()
                else:
                    print('Среднее значение:', metric['value'])
Example #4
0
                    default='1')
args = parser.parse_args()

dataset_name = args.dataset
dataset_specific_api_name = args.api or dataset_name
threads = int(args.threads)
overwrite = int(args.overwrite)
continue_calc = int(args.continue_calc)

# creating report object
report_file_path = 'report_' + dataset_name + '.json'
if overwrite or (not os.path.exists(report_file_path)):
    report = Report(report_file_path)

# geting dataset specific api
dataset_specific_api = getDatasetSpecificApi(dataset_specific_api_name)

# geting pairs from directory
directory = 'pairs_' + dataset_name + '_new'
if overwrite or (not os.path.exists(directory)) or continue_calc:
    directory = directory.replace('_new', '')
pairs = Pairs(directory, get_classes_function=dataset_specific_api.getClasses)

# using this function you can see and list (press q) images with from class
# showFromClassContinuously(pairs, 'Unknown', dataset_specific_api.getClasses)

# counting objects in classes
if overwrite or (not os.path.exists(report_file_path)):
    objects_number_by_class = pairs.countObjectsInClasses()
    report.write('objects number by class', objects_number_by_class)
Example #5
0
from tsnecuda import TSNE
import numpy as np
from pairs import Pairs
from filters import getPairsMetrics, getPairsMetricsWithPairs
from dataset_specific_api import getDatasetSpecificApi
import cProfile
from objects import getObjectPath

dataset_name = 'faces_not_clear_2'
clusters_number = 2
dataset_dir = 'pairs_' + dataset_name + '_new'
dataset_specific_api = getDatasetSpecificApi('experiment')
pairs = Pairs(dataset_dir,
              get_classes_function=dataset_specific_api.getClasses)
# pairs.filterBy({'__class__': ['happy']})

pairs.setReturnNames(True)
hogs_and_pairs = list(getPairsMetricsWithPairs(pairs, 'hog', threads=24))
pairs.setReturnNames(False)
hogs = np.array([e[0] for e in hogs_and_pairs])
print(hogs.shape[0], 'elements')
tsne = TSNE(n_components=2).fit_transform(hogs)
print(tsne)
Example #6
0
overwrite = int(args.overwrite)
splited = int(args.splited)



# geting files

print('geting files...')
files = getFiles(dataset_folder)
print('got', len(files), 'files')



# geting dataset specific api

dataset_specific_api = getDatasetSpecificApi(dataset_specific_api_name, splited_by_frames=splited)



# geting annotations data

print('geting annotations data...')
annotations_data = dataset_specific_api.getAnnotationsData(files)
print('got')



# creating objects iterator

print('creating objects iterator...')
objects = iter(Objects(files, dataset_specific_api.objects_extensions))