Example #1
0
    def predict(self, img_path):
        os.environ['CUDA_VISIBLE_DEVICES'] = '0'
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

        SR_dir = join(os.path.dirname(img_path), 'result')
        if not os.path.exists(SR_dir):
            os.makedirs(SR_dir)

        testloader = DataLoader(DataValSet(img_path),
                                batch_size=1,
                                shuffle=False,
                                pin_memory=False)
        model = torch.load(self.model)
        model = model.to(device)

        with torch.no_grad():
            for iteration, batch in enumerate(testloader, 1):
                LR_Blur = batch[0]
                HR = batch[1]
                LR_Blur = LR_Blur.to(device)
                HR = HR.to(device)
                test_Tensor = torch.cuda.FloatTensor().resize_(1).zero_() + 1
                gated_Tensor = torch.cuda.FloatTensor().resize_(1).zero_() + 1

                [lr_deblur, sr] = model(LR_Blur, gated_Tensor, test_Tensor)
                sr = torch.clamp(sr, min=0, max=1)
                torch.cuda.synchronize()  #wait for CPU & GPU time syn
                resultSRDeblur = transforms.ToPILImage()(sr.cpu()[0])
                resultSRDeblur.save(join(SR_dir, 'result.png'))
Example #2
0
    criterion = torch.nn.MSELoss(size_average=True)
    criterion = criterion.to(device)
    print(opt)
    test(testloader, model, criterion, SR_dir)


opt = parser.parse_args()
root_val_dir = opt.dataset  # #----------Validation path
SR_dir = join(root_val_dir,
              'Results')  #--------------------------SR results save path
isexists = os.path.exists(SR_dir)
if not isexists:
    os.makedirs(SR_dir)
print("The results of testing images sotre in {}.".format(SR_dir))

testloader = DataLoader(DataValSet(root_val_dir),
                        batch_size=1,
                        shuffle=False,
                        pin_memory=False)
print("===> Loading model and criterion")

if opt.intermediate_process:
    test_pkl = opt.intermediate_process
    if is_pkl(test_pkl):
        print("Testing model {}----------------------------------".format(
            opt.intermediate_process))
        train_step, epoch = which_trainingstep_epoch(opt.intermediate_process)
        opt.gated = test_set[train_step - 1]['gated']
        model = torch.load(test_pkl)
        model_test(model)
    else:
Example #3
0
def model_test(model):
    model = model.to(device)
    criterion = torch.nn.MSELoss(size_average=True)
    criterion = criterion.to(device)
    print(opt)
    test(testloader, model, criterion, SR_dir)

opt = parser.parse_args()
root_val_dir = opt.dataset# #----------Validation path
SR_dir = join(root_val_dir, 'Results')  #--------------------------SR results save path
isexists = os.path.exists(SR_dir)
if not isexists:
    os.makedirs(SR_dir)
print("The results of testing images sotre in {}.".format(SR_dir))

testloader = DataLoader(DataValSet(root_val_dir), batch_size=1, shuffle=False, pin_memory=False)
print("===> Loading model and criterion")

if opt.intermediate_process:
    test_pkl = opt.intermediate_process
    if is_pkl(test_pkl):
        print("Testing model {}----------------------------------".format(opt.intermediate_process))
        train_step, epoch = which_trainingstep_epoch(opt.intermediate_process)
        opt.gated = test_set[train_step-1]['gated']
        model = torch.load(test_pkl)
        model_test(model)
    else:
        print("It's not a pkl file. Please give a correct pkl folder on command line for example --opt.intermediate_process /models/1/GFN_epoch_25.pkl)")
else:
    test_dir = 'models/'
    test_list = [x for x in sorted(os.listdir(test_dir)) if is_pkl(x)]