def sample_meta_test(self, ratio=0.75, fixed=None): fixed = fixed if fixed is not None else self.fixed if fixed and self.meta_test: return self.meta_test inner_train, inner_test = self._random_split(self.m_test_d, ratio) self.meta_test['in_train'] = IterDataLoader.from_dataset( inner_train, self.batch_size) self.meta_test['in_test'] = IterDataLoader.from_dataset( inner_test, self.batch_size) return self.meta_test
def sample_meta_test(self, n_sample=10, ratio=0.75, fixed=None): fixed = fixed if fixed is not None else self.fixed if fixed and self.meta_test: return self.meta_test m_test_sampled = self.m_test_d.class_sample(n_sample, preload=True) inner_train, inner_test = m_test_sampled.intra_class_split(ratio, True) self.meta_test['in_train'] = IterDataLoader.from_dataset( inner_train, self.batch_size) self.meta_test['in_test'] = IterDataLoader.from_dataset( inner_test, self.batch_size) return self.meta_test
def _get_wrapped_dataloader(self, dataset, batch_size): sampler = data.sampler.RandomSampler(dataset, replacement=True) loader = data.DataLoader(dataset, batch_size=batch_size, sampler=sampler) return IterDataLoader(loader)