def __init__(self, configer): self.configer = configer self.det_visualizer = DetVisualizer(configer) self.det_model_manager = DetModelManager(configer) self.det_data_loader = DetDataLoader(configer) self.module_utilizer = ModuleUtilizer(configer) self.default_boxes = PriorBoxLayer(configer)() self.device = torch.device('cpu' if self.configer.get('gpu') is None else 'cuda') self.det_net = None
def __init__(self, configer): self.configer = configer self.blob_helper = BlobHelper(configer) self.det_visualizer = DetVisualizer(configer) self.det_parser = DetParser(configer) self.det_model_manager = DetModelManager(configer) self.det_data_loader = DetDataLoader(configer) self.module_utilizer = ModuleUtilizer(configer) self.data_transformer = DataTransformer(configer) self.ssd_priorbox_layer = SSDPriorBoxLayer(configer) self.ssd_target_generator = SSDTargetGenerator(configer) self.device = torch.device( 'cpu' if self.configer.get('gpu') is None else 'cuda') self.det_net = None self._init_model()
def __init__(self, configer): self.configer = configer self.batch_time = AverageMeter() self.data_time = AverageMeter() self.train_losses = AverageMeter() self.val_losses = AverageMeter() self.det_visualizer = DetVisualizer(configer) self.det_loss_manager = DetLossManager(configer) self.det_model_manager = DetModelManager(configer) self.det_data_loader = DetDataLoader(configer) self.module_utilizer = ModuleUtilizer(configer) self.optim_scheduler = OptimScheduler(configer) self.det_net = None self.train_loader = None self.val_loader = None self.optimizer = None self.scheduler = None
def __init__(self, configer): self.configer = configer self.batch_time = AverageMeter() self.data_time = AverageMeter() self.train_losses = AverageMeter() self.val_losses = AverageMeter() self.det_visualizer = DetVisualizer(configer) self.det_loss_manager = DetLossManager(configer) self.det_model_manager = DetModelManager(configer) self.det_data_loader = DetDataLoader(configer) self.yolo_detection_layer = YOLODetectionLayer(configer) self.yolo_target_generator = YOLOTargetGenerator(configer) self.det_running_score = DetRunningScore(configer) self.module_utilizer = ModuleUtilizer(configer) self.optim_scheduler = OptimScheduler(configer) self.det_net = None self.train_loader = None self.val_loader = None self.optimizer = None self.scheduler = None self._init_model()
def __init__(self, configer): self.configer = configer self.batch_time = AverageMeter() self.data_time = AverageMeter() self.train_losses = AverageMeter() self.val_losses = AverageMeter() self.det_visualizer = DetVisualizer(configer) self.det_loss_manager = DetLossManager(configer) self.det_model_manager = DetModelManager(configer) self.det_data_loader = DetDataLoader(configer) self.ssd_target_generator = SSDTargetGenerator(configer) self.ssd_priorbox_layer = SSDPriorBoxLayer(configer) self.det_running_score = DetRunningScore(configer) self.module_utilizer = ModuleUtilizer(configer) self.optim_scheduler = OptimScheduler(configer) self.data_transformer = DataTransformer(configer) self.det_net = None self.train_loader = None self.val_loader = None self.optimizer = None self.scheduler = None self._init_model()
class YOLOv3(object): """ The class for YOLO v3. Include train, val, test & predict. """ def __init__(self, configer): self.configer = configer self.batch_time = AverageMeter() self.data_time = AverageMeter() self.train_losses = AverageMeter() self.val_losses = AverageMeter() self.det_visualizer = DetVisualizer(configer) self.det_loss_manager = DetLossManager(configer) self.det_model_manager = DetModelManager(configer) self.det_data_loader = DetDataLoader(configer) self.yolo_detection_layer = YOLODetectionLayer(configer) self.yolo_target_generator = YOLOTargetGenerator(configer) self.det_running_score = DetRunningScore(configer) self.module_utilizer = ModuleUtilizer(configer) self.optim_scheduler = OptimScheduler(configer) self.det_net = None self.train_loader = None self.val_loader = None self.optimizer = None self.scheduler = None self._init_model() def _init_model(self): self.det_net = self.det_model_manager.object_detector() self.det_net = self.module_utilizer.load_net(self.det_net) self.optimizer, self.scheduler = self.optim_scheduler.init_optimizer( self._get_parameters()) self.train_loader = self.det_data_loader.get_trainloader() self.val_loader = self.det_data_loader.get_valloader() self.det_loss = self.det_loss_manager.get_det_loss('yolov3_loss') def _get_parameters(self): lr_1 = [] lr_10 = [] params_dict = dict(self.det_net.named_parameters()) for key, value in params_dict.items(): if 'backbone.' not in key: lr_10.append(value) else: lr_1.append(value) params = [{ 'params': lr_1, 'lr': self.configer.get('lr', 'base_lr') }, { 'params': lr_10, 'lr': self.configer.get('lr', 'base_lr') * 10. }] return params def warm_lr(self, batch_len): """Sets the learning rate # Adapted from PyTorch Imagenet example: # https://github.com/pytorch/examples/blob/master/imagenet/main.py """ warm_iters = self.configer.get('lr', 'warm')['warm_epoch'] * batch_len if self.configer.get('iters') < warm_iters: lr_ratio = (self.configer.get('iters') + 1) / warm_iters base_lr_list = self.scheduler.get_lr() for param_group, base_lr in zip(self.optimizer.param_groups, base_lr_list): param_group['lr'] = base_lr * lr_ratio if self.configer.get('iters') % self.configer.get( 'solver', 'display_iter') == 0: Log.info('LR: {}'.format([ param_group['lr'] for param_group in self.optimizer.param_groups ])) def __train(self): """ Train function of every epoch during train phase. """ self.det_net.train() start_time = time.time() # Adjust the learning rate after every epoch. self.configer.plus_one('epoch') self.scheduler.step(self.configer.get('epoch')) # data_tuple: (inputs, heatmap, maskmap, vecmap) for i, data_dict in enumerate(self.train_loader): if not self.configer.is_empty( 'lr', 'is_warm') and self.configer.get('lr', 'is_warm'): self.warm_lr(len(self.train_loader)) inputs = data_dict['img'] batch_gt_bboxes = data_dict['bboxes'] batch_gt_labels = data_dict['labels'] input_size = [inputs.size(3), inputs.size(2)] self.data_time.update(time.time() - start_time) # Change the data type. inputs = self.module_utilizer.to_device(inputs) # Forward pass. feat_list, predictions, _ = self.det_net(inputs) targets, objmask, noobjmask = self.yolo_target_generator( feat_list, batch_gt_bboxes, batch_gt_labels, input_size) targets, objmask, noobjmask = self.module_utilizer.to_device( targets, objmask, noobjmask) # Compute the loss of the train batch & backward. loss = self.det_loss(predictions, targets, objmask, noobjmask) self.train_losses.update(loss.item(), inputs.size(0)) self.optimizer.zero_grad() loss.backward() self.optimizer.step() # Update the vars of the train phase. self.batch_time.update(time.time() - start_time) start_time = time.time() self.configer.plus_one('iters') # Print the log info & reset the states. if self.configer.get('iters') % self.configer.get( 'solver', 'display_iter') == 0: Log.info( 'Train Epoch: {0}\tTrain Iteration: {1}\t' 'Time {batch_time.sum:.3f}s / {2}iters, ({batch_time.avg:.3f})\t' 'Data load {data_time.sum:.3f}s / {2}iters, ({data_time.avg:3f})\n' 'Learning rate = {3}\tLoss = {loss.val:.8f} (ave = {loss.avg:.8f})\n' .format(self.configer.get('epoch'), self.configer.get('iters'), self.configer.get('solver', 'display_iter'), self.scheduler.get_lr(), batch_time=self.batch_time, data_time=self.data_time, loss=self.train_losses)) self.batch_time.reset() self.data_time.reset() self.train_losses.reset() # Check to val the current model. if self.val_loader is not None and \ (self.configer.get('iters')) % self.configer.get('solver', 'test_interval') == 0: self.__val() def __val(self): """ Validation function during the train phase. """ self.det_net.eval() start_time = time.time() with torch.no_grad(): for i, data_dict in enumerate(self.val_loader): inputs = data_dict['img'] batch_gt_bboxes = data_dict['bboxes'] batch_gt_labels = data_dict['labels'] input_size = [inputs.size(3), inputs.size(2)] # Forward pass. inputs = self.module_utilizer.to_device(inputs) feat_list, predictions, detections = self.det_net(inputs) targets, objmask, noobjmask = self.yolo_target_generator( feat_list, batch_gt_bboxes, batch_gt_labels, input_size) targets, objmask, noobjmask = self.module_utilizer.to_device( targets, objmask, noobjmask) # Compute the loss of the val batch. loss = self.det_loss(predictions, targets, objmask, noobjmask) self.val_losses.update(loss.item(), inputs.size(0)) batch_detections = YOLOv3Test.decode(detections, self.configer) batch_pred_bboxes = self.__get_object_list( batch_detections, input_size) self.det_running_score.update(batch_pred_bboxes, batch_gt_bboxes, batch_gt_labels) # Update the vars of the val phase. self.batch_time.update(time.time() - start_time) start_time = time.time() self.module_utilizer.save_net(self.det_net, save_mode='iters') # Print the log info & reset the states. Log.info( 'Test Time {batch_time.sum:.3f}s, ({batch_time.avg:.3f})\t' 'Loss {loss.avg:.8f}\n'.format(batch_time=self.batch_time, loss=self.val_losses)) Log.info('Val mAP: {}'.format(self.det_running_score.get_mAP())) self.det_running_score.reset() self.batch_time.reset() self.val_losses.reset() self.det_net.train() def __get_object_list(self, batch_detections, input_size): batch_pred_bboxes = list() for idx, detections in enumerate(batch_detections): object_list = list() if detections is not None: for x1, y1, x2, y2, conf, cls_conf, cls_pred in detections: xmin = x1.cpu().item() * input_size[0] ymin = y1.cpu().item() * input_size[1] xmax = x2.cpu().item() * input_size[0] ymax = y2.cpu().item() * input_size[1] cf = conf.cpu().item() cls_pred = cls_pred.cpu().item() object_list.append([ xmin, ymin, xmax, ymax, int(cls_pred), float('%.2f' % cf) ]) batch_pred_bboxes.append(object_list) return batch_pred_bboxes def train(self): cudnn.benchmark = True if self.configer.get('network', 'resume') is not None and self.configer.get( 'network', 'resume_val'): self.__val() while self.configer.get('epoch') < self.configer.get( 'solver', 'max_epoch'): self.__train() if self.configer.get('epoch') == self.configer.get( 'solver', 'max_epoch'): break
class FastRCNNTest(object): def __init__(self, configer): self.configer = configer self.blob_helper = BlobHelper(configer) self.det_visualizer = DetVisualizer(configer) self.det_parser = DetParser(configer) self.det_model_manager = DetModelManager(configer) self.det_data_loader = DetDataLoader(configer) self.roi_sampler = FRRoiSampleLayer(configer) self.module_utilizer = ModuleUtilizer(configer) self.rpn_target_generator = RPNTargetGenerator(configer) self.fr_priorbox_layer = FRPriorBoxLayer(configer) self.fr_roi_generator = FRRoiGenerator(configer) self.data_transformer = DataTransformer(configer) self.device = torch.device( 'cpu' if self.configer.get('gpu') is None else 'cuda') self.det_net = None self._init_model() def _init_model(self): self.det_net = self.det_model_manager.object_detector() self.det_net = self.module_utilizer.load_net(self.det_net) self.det_net.eval() def __test_img(self, image_path, json_path, raw_path, vis_path): Log.info('Image Path: {}'.format(image_path)) img = ImageHelper.read_image( image_path, tool=self.configer.get('data', 'image_tool'), mode=self.configer.get('data', 'input_mode')) ori_img_bgr = ImageHelper.get_cv2_bgr(img, mode=self.configer.get( 'data', 'input_mode')) img, scale = BoundResize()(img) inputs = self.blob_helper.make_input(img, scale=1.0) with torch.no_grad(): # Forward pass. test_group = self.det_net(inputs, scale) test_indices_and_rois, test_roi_locs, test_roi_scores, test_rois_num = test_group batch_detections = self.decode(test_roi_locs, test_roi_scores, test_indices_and_rois, test_rois_num, self.configer, ImageHelper.get_size(img)) json_dict = self.__get_info_tree(batch_detections[0], ori_img_bgr, scale=scale) image_canvas = self.det_parser.draw_bboxes( ori_img_bgr.copy(), json_dict, conf_threshold=self.configer.get('vis', 'conf_threshold')) cv2.imwrite(vis_path, image_canvas) cv2.imwrite(raw_path, ori_img_bgr) Log.info('Json Path: {}'.format(json_path)) JsonHelper.save_file(json_dict, json_path) return json_dict @staticmethod def decode(roi_locs, roi_scores, indices_and_rois, test_rois_num, configer, input_size): roi_locs = roi_locs.cpu() roi_scores = roi_scores.cpu() indices_and_rois = indices_and_rois.cpu() num_classes = configer.get('data', 'num_classes') mean = torch.Tensor(configer.get( 'roi', 'loc_normalize_mean')).repeat(num_classes)[None] std = torch.Tensor(configer.get( 'roi', 'loc_normalize_std')).repeat(num_classes)[None] mean = mean.to(roi_locs.device) std = std.to(roi_locs.device) roi_locs = (roi_locs * std + mean) roi_locs = roi_locs.contiguous().view(-1, num_classes, 4) # roi_locs = roi_locs[:,:, [1, 0, 3, 2]] rois = indices_and_rois[:, 1:] rois = rois.contiguous().view(-1, 1, 4).expand_as(roi_locs) wh = torch.exp(roi_locs[:, :, 2:]) * (rois[:, :, 2:] - rois[:, :, :2]) cxcy = roi_locs[:, :, :2] * (rois[:, :, 2:] - rois[:, :, :2]) + ( rois[:, :, :2] + rois[:, :, 2:]) / 2 dst_bbox = torch.cat([cxcy - wh / 2, cxcy + wh / 2], 2) # [b, 8732,4] # clip bounding box dst_bbox[:, :, 0::2] = (dst_bbox[:, :, 0::2]).clamp(min=0, max=input_size[0] - 1) dst_bbox[:, :, 1::2] = (dst_bbox[:, :, 1::2]).clamp(min=0, max=input_size[1] - 1) if configer.get('phase') != 'debug': cls_prob = F.softmax(roi_scores, dim=1) else: cls_prob = roi_scores cls_label = torch.LongTensor([i for i in range(num_classes)])\ .contiguous().view(1, num_classes).repeat(indices_and_rois.size(0), 1) output = [None for _ in range(test_rois_num.size(0))] start_index = 0 for i in range(test_rois_num.size(0)): # batch_index = (indices_and_rois[:, 0] == i).nonzero().contiguous().view(-1,) # tmp_dst_bbox = dst_bbox[batch_index] # tmp_cls_prob = cls_prob[batch_index] # tmp_cls_label = cls_label[batch_index] tmp_dst_bbox = dst_bbox[start_index:start_index + test_rois_num[i]] tmp_cls_prob = cls_prob[start_index:start_index + test_rois_num[i]] tmp_cls_label = cls_label[start_index:start_index + test_rois_num[i]] start_index += test_rois_num[i] mask = (tmp_cls_prob > configer.get( 'vis', 'conf_threshold')) & (tmp_cls_label > 0) tmp_dst_bbox = tmp_dst_bbox[mask].contiguous().view(-1, 4) if tmp_dst_bbox.numel() == 0: continue tmp_cls_prob = tmp_cls_prob[mask].contiguous().view( -1, ).unsqueeze(1) tmp_cls_label = tmp_cls_label[mask].contiguous().view( -1, ).unsqueeze(1) valid_preds = torch.cat( (tmp_dst_bbox, tmp_cls_prob.float(), tmp_cls_label.float()), 1) keep = DetHelper.cls_nms(valid_preds[:, :4], scores=valid_preds[:, 4], labels=valid_preds[:, 5], nms_threshold=configer.get( 'nms', 'overlap_threshold'), iou_mode=configer.get('nms', 'mode')) output[i] = valid_preds[keep] return output def __make_tensor(self, gt_bboxes, gt_labels): len_arr = [gt_labels[i].numel() for i in range(len(gt_bboxes))] batch_maxlen = max(max(len_arr), 1) target_bboxes = torch.zeros((len(gt_bboxes), batch_maxlen, 4)).float() target_labels = torch.zeros((len(gt_bboxes), batch_maxlen)).long() for i in range(len(gt_bboxes)): target_bboxes[i, :len_arr[i], :] = gt_bboxes[i] target_labels[i, :len_arr[i]] = gt_labels[i] target_bboxes_num = torch.Tensor(len_arr).long() return target_bboxes, target_bboxes_num, target_labels def __get_info_tree(self, detections, image_raw, scale=1.0): height, width, _ = image_raw.shape json_dict = dict() object_list = list() if detections is not None: for x1, y1, x2, y2, conf, cls_pred in detections: object_dict = dict() xmin = min(x1.cpu().item() / scale, width - 1) ymin = min(y1.cpu().item() / scale, height - 1) xmax = min(x2.cpu().item() / scale, width - 1) ymax = min(y2.cpu().item() / scale, height - 1) object_dict['bbox'] = [xmin, ymin, xmax, ymax] object_dict['label'] = int(cls_pred.cpu().item()) - 1 object_dict['score'] = float('%.2f' % conf.cpu().item()) object_list.append(object_dict) json_dict['objects'] = object_list return json_dict def test(self): base_dir = os.path.join(self.configer.get('project_dir'), 'val/results/det', self.configer.get('dataset')) test_img = self.configer.get('test_img') test_dir = self.configer.get('test_dir') if test_img is None and test_dir is None: Log.error('test_img & test_dir not exists.') exit(1) if test_img is not None and test_dir is not None: Log.error('Either test_img or test_dir.') exit(1) if test_img is not None: base_dir = os.path.join(base_dir, 'test_img') filename = test_img.rstrip().split('/')[-1] json_path = os.path.join( base_dir, 'json', '{}.json'.format('.'.join(filename.split('.')[:-1]))) raw_path = os.path.join(base_dir, 'raw', filename) vis_path = os.path.join( base_dir, 'vis', '{}_vis.png'.format('.'.join(filename.split('.')[:-1]))) FileHelper.make_dirs(json_path, is_file=True) FileHelper.make_dirs(raw_path, is_file=True) FileHelper.make_dirs(vis_path, is_file=True) self.__test_img(test_img, json_path, raw_path, vis_path) else: base_dir = os.path.join(base_dir, 'test_dir', test_dir.rstrip('/').split('/')[-1]) FileHelper.make_dirs(base_dir) for filename in FileHelper.list_dir(test_dir): image_path = os.path.join(test_dir, filename) json_path = os.path.join( base_dir, 'json', '{}.json'.format('.'.join(filename.split('.')[:-1]))) raw_path = os.path.join(base_dir, 'raw', filename) vis_path = os.path.join( base_dir, 'vis', '{}_vis.png'.format('.'.join(filename.split('.')[:-1]))) FileHelper.make_dirs(json_path, is_file=True) FileHelper.make_dirs(raw_path, is_file=True) FileHelper.make_dirs(vis_path, is_file=True) self.__test_img(image_path, json_path, raw_path, vis_path) def debug(self): base_dir = os.path.join(self.configer.get('project_dir'), 'vis/results/det', self.configer.get('dataset'), 'debug') if not os.path.exists(base_dir): os.makedirs(base_dir) count = 0 for i, data_dict in enumerate(self.det_data_loader.get_trainloader()): img_scale = data_dict['imgscale'] inputs = data_dict['img'] batch_gt_bboxes = data_dict['bboxes'] # batch_gt_bboxes = ResizeBoxes()(inputs, data_dict['bboxes']) batch_gt_labels = data_dict['labels'] input_size = [inputs.size(3), inputs.size(2)] feat_list = list() for stride in self.configer.get('rpn', 'stride_list'): feat_list.append( torch.zeros((inputs.size(0), 1, input_size[1] // stride, input_size[0] // stride))) gt_rpn_locs, gt_rpn_labels = self.rpn_target_generator( feat_list, batch_gt_bboxes, input_size) eye_matrix = torch.eye(2) gt_rpn_labels[gt_rpn_labels == -1] = 0 gt_rpn_scores = eye_matrix[gt_rpn_labels.view(-1)].view( inputs.size(0), -1, 2) test_indices_and_rois, _ = self.fr_roi_generator( feat_list, gt_rpn_locs, gt_rpn_scores, self.configer.get('rpn', 'n_test_pre_nms'), self.configer.get('rpn', 'n_test_post_nms'), input_size, img_scale) gt_bboxes, gt_nums, gt_labels = self.__make_tensor( batch_gt_bboxes, batch_gt_labels) sample_rois, gt_roi_locs, gt_roi_labels = self.roi_sampler( test_indices_and_rois, gt_bboxes, gt_nums, gt_labels, input_size) self.det_visualizer.vis_rois(inputs, sample_rois[gt_roi_labels > 0]) gt_cls_roi_locs = torch.zeros( (gt_roi_locs.size(0), self.configer.get('data', 'num_classes'), 4)) gt_cls_roi_locs[torch.arange(0, sample_rois.size(0)).long(), gt_roi_labels.long()] = gt_roi_locs gt_cls_roi_locs = gt_cls_roi_locs.contiguous().view( -1, 4 * self.configer.get('data', 'num_classes')) eye_matrix = torch.eye(self.configer.get('data', 'num_classes')) gt_roi_scores = eye_matrix[gt_roi_labels.view(-1)].view( gt_roi_labels.size(0), self.configer.get('data', 'num_classes')) test_rois_num = torch.zeros((len(gt_bboxes), )).long() for batch_id in range(len(gt_bboxes)): batch_index = ( sample_rois[:, 0] == batch_id).nonzero().contiguous().view( -1, ) test_rois_num[batch_id] = batch_index.numel() batch_detections = FastRCNNTest.decode(gt_cls_roi_locs, gt_roi_scores, sample_rois, test_rois_num, self.configer, input_size) for j in range(inputs.size(0)): count = count + 1 if count > 20: exit(1) ori_img_bgr = self.blob_helper.tensor2bgr(inputs[j]) self.det_visualizer.vis_default_bboxes( ori_img_bgr, self.fr_priorbox_layer(feat_list, input_size), gt_rpn_labels[j]) json_dict = self.__get_info_tree(batch_detections[j], ori_img_bgr) image_canvas = self.det_parser.draw_bboxes( ori_img_bgr.copy(), json_dict, conf_threshold=self.configer.get('vis', 'conf_threshold')) cv2.imwrite( os.path.join(base_dir, '{}_{}_vis.png'.format(i, j)), image_canvas) cv2.imshow('main', image_canvas) cv2.waitKey()
class FasterRCNN(object): """ The class for Single Shot Detector. Include train, val, test & predict. """ def __init__(self, configer): self.configer = configer self.batch_time = AverageMeter() self.data_time = AverageMeter() self.train_losses = AverageMeter() self.val_losses = AverageMeter() self.det_visualizer = DetVisualizer(configer) self.det_loss_manager = DetLossManager(configer) self.det_model_manager = DetModelManager(configer) self.det_data_loader = DetDataLoader(configer) self.fr_priorbox_layer = FRPriorBoxLayer(configer) self.rpn_target_generator = RPNTargetGenerator(configer) self.det_running_score = DetRunningScore(configer) self.module_utilizer = ModuleUtilizer(configer) self.optim_scheduler = OptimScheduler(configer) self.det_net = None self.train_loader = None self.val_loader = None self.optimizer = None self.scheduler = None self._init_model() def _init_model(self): self.det_net = self.det_model_manager.object_detector() self.det_net = self.module_utilizer.load_net(self.det_net) self.optimizer, self.scheduler = self.optim_scheduler.init_optimizer( self._get_parameters()) self.train_loader = self.det_data_loader.get_trainloader() self.val_loader = self.det_data_loader.get_valloader() self.fr_loss = self.det_loss_manager.get_det_loss('fr_loss') def _get_parameters(self): lr_1 = [] lr_2 = [] params_dict = dict(self.det_net.named_parameters()) for key, value in params_dict.items(): if value.requires_grad: if 'bias' in key: lr_2.append(value) else: lr_1.append(value) params = [{ 'params': lr_1, 'lr': self.configer.get('lr', 'base_lr') }, { 'params': lr_2, 'lr': self.configer.get('lr', 'base_lr') * 2., 'weight_decay': 0 }] return params def __train(self): """ Train function of every epoch during train phase. """ self.det_net.train() start_time = time.time() # Adjust the learning rate after every epoch. self.configer.plus_one('epoch') self.scheduler.step(self.configer.get('epoch')) for i, data_dict in enumerate(self.train_loader): inputs = data_dict['img'] img_scale = data_dict['imgscale'] batch_gt_bboxes = data_dict['bboxes'] batch_gt_labels = data_dict['labels'] self.data_time.update(time.time() - start_time) # Change the data type. gt_bboxes, gt_nums, gt_labels = self.__make_tensor( batch_gt_bboxes, batch_gt_labels) gt_bboxes, gt_num, gt_labels = self.module_utilizer.to_device( gt_bboxes, gt_nums, gt_labels) inputs = self.module_utilizer.to_device(inputs) # Forward pass. feat_list, train_group = self.det_net(inputs, gt_bboxes, gt_num, gt_labels, img_scale) gt_rpn_locs, gt_rpn_labels = self.rpn_target_generator( feat_list, batch_gt_bboxes, [inputs.size(3), inputs.size(2)]) gt_rpn_locs, gt_rpn_labels = self.module_utilizer.to_device( gt_rpn_locs, gt_rpn_labels) rpn_locs, rpn_scores, sample_roi_locs, sample_roi_scores, gt_roi_bboxes, gt_roi_labels = train_group # Compute the loss of the train batch & backward. loss = self.fr_loss( [rpn_locs, rpn_scores, sample_roi_locs, sample_roi_scores], [gt_rpn_locs, gt_rpn_labels, gt_roi_bboxes, gt_roi_labels]) self.train_losses.update(loss.item(), inputs.size(0)) self.optimizer.zero_grad() loss.backward() self.module_utilizer.clip_grad(self.det_net, 10.) self.optimizer.step() # Update the vars of the train phase. self.batch_time.update(time.time() - start_time) start_time = time.time() self.configer.plus_one('iters') # Print the log info & reset the states. if self.configer.get('iters') % self.configer.get( 'solver', 'display_iter') == 0: Log.info( 'Train Epoch: {0}\tTrain Iteration: {1}\t' 'Time {batch_time.sum:.3f}s / {2}iters, ({batch_time.avg:.3f})\t' 'Data load {data_time.sum:.3f}s / {2}iters, ({data_time.avg:3f})\n' 'Learning rate = {3}\tLoss = {loss.val:.8f} (ave = {loss.avg:.8f})\n' .format(self.configer.get('epoch'), self.configer.get('iters'), self.configer.get('solver', 'display_iter'), self.scheduler.get_lr(), batch_time=self.batch_time, data_time=self.data_time, loss=self.train_losses)) self.batch_time.reset() self.data_time.reset() self.train_losses.reset() # Check to val the current model. if self.val_loader is not None and \ (self.configer.get('iters')) % self.configer.get('solver', 'test_interval') == 0: self.__val() def __val(self): """ Validation function during the train phase. """ self.det_net.eval() start_time = time.time() with torch.no_grad(): for j, data_dict in enumerate(self.val_loader): inputs = data_dict['img'] img_scale = data_dict['imgscale'] batch_gt_bboxes = data_dict['bboxes'] batch_gt_labels = data_dict['labels'] # Change the data type. gt_bboxes, gt_nums, gt_labels = self.__make_tensor( batch_gt_bboxes, batch_gt_labels) gt_bboxes, gt_num, gt_labels = self.module_utilizer.to_device( gt_bboxes, gt_nums, gt_labels) inputs = self.module_utilizer.to_device(inputs) # Forward pass. feat_list, train_group, test_group = self.det_net( inputs, gt_bboxes, gt_nums, gt_labels, img_scale) rpn_locs, rpn_scores, sample_roi_locs, sample_roi_scores, gt_roi_bboxes, gt_roi_labels = train_group gt_rpn_locs, gt_rpn_labels = self.rpn_target_generator( feat_list, batch_gt_bboxes, [inputs.size(3), inputs.size(2)]) gt_rpn_locs, gt_rpn_labels = self.module_utilizer.to_device( gt_rpn_locs, gt_rpn_labels) # Compute the loss of the train batch & backward. loss = self.fr_loss( [rpn_locs, rpn_scores, sample_roi_locs, sample_roi_scores], [gt_rpn_locs, gt_rpn_labels, gt_roi_bboxes, gt_roi_labels]) self.val_losses.update(loss.item(), inputs.size(0)) test_indices_and_rois, test_roi_locs, test_roi_scores, test_rois_num = test_group batch_detections = FastRCNNTest.decode( test_roi_locs, test_roi_scores, test_indices_and_rois, test_rois_num, self.configer, [inputs.size(3), inputs.size(2)]) batch_pred_bboxes = self.__get_object_list(batch_detections) self.det_running_score.update(batch_pred_bboxes, batch_gt_bboxes, batch_gt_labels) # Update the vars of the val phase. self.batch_time.update(time.time() - start_time) start_time = time.time() self.module_utilizer.save_net(self.det_net, save_mode='iters') # Print the log info & reset the states. Log.info( 'Test Time {batch_time.sum:.3f}s, ({batch_time.avg:.3f})\t' 'Loss {loss.avg:.8f}\n'.format(batch_time=self.batch_time, loss=self.val_losses)) Log.info('Val mAP: {}\n'.format(self.det_running_score.get_mAP())) self.det_running_score.reset() self.batch_time.reset() self.val_losses.reset() self.det_net.train() def __make_tensor(self, gt_bboxes, gt_labels): len_arr = [gt_labels[i].numel() for i in range(len(gt_bboxes))] batch_maxlen = max(max(len_arr), 1) target_bboxes = torch.zeros((len(gt_bboxes), batch_maxlen, 4)).float() target_labels = torch.zeros((len(gt_bboxes), batch_maxlen)).long() for i in range(len(gt_bboxes)): if len_arr[i] == 0: continue target_bboxes[i, :len_arr[i], :] = gt_bboxes[i].clone() target_labels[i, :len_arr[i]] = gt_labels[i].clone() target_bboxes_num = torch.Tensor(len_arr).long() return target_bboxes, target_bboxes_num, target_labels def __get_object_list(self, batch_detections): batch_pred_bboxes = list() for idx, detections in enumerate(batch_detections): object_list = list() if detections is not None: for x1, y1, x2, y2, conf, cls_pred in detections: xmin = x1.cpu().item() ymin = y1.cpu().item() xmax = x2.cpu().item() ymax = y2.cpu().item() cf = conf.cpu().item() cls_pred = int(cls_pred.cpu().item()) - 1 object_list.append( [xmin, ymin, xmax, ymax, cls_pred, float('%.2f' % cf)]) batch_pred_bboxes.append(object_list) return batch_pred_bboxes def train(self): cudnn.benchmark = True if self.configer.get('network', 'resume') is not None and self.configer.get( 'network', 'resume_val'): self.__val() while self.configer.get('epoch') < self.configer.get( 'solver', 'max_epoch'): self.__train() if self.configer.get('epoch') == self.configer.get( 'solver', 'max_epoch'): break
class SingleShotDetectorTest(object): def __init__(self, configer): self.configer = configer self.blob_helper = BlobHelper(configer) self.det_visualizer = DetVisualizer(configer) self.det_parser = DetParser(configer) self.det_model_manager = DetModelManager(configer) self.det_data_loader = DetDataLoader(configer) self.module_utilizer = ModuleUtilizer(configer) self.data_transformer = DataTransformer(configer) self.ssd_priorbox_layer = SSDPriorBoxLayer(configer) self.ssd_target_generator = SSDTargetGenerator(configer) self.device = torch.device( 'cpu' if self.configer.get('gpu') is None else 'cuda') self.det_net = None self._init_model() def _init_model(self): self.det_net = self.det_model_manager.object_detector() self.det_net = self.module_utilizer.load_net(self.det_net) self.det_net.eval() def __test_img(self, image_path, json_path, raw_path, vis_path): Log.info('Image Path: {}'.format(image_path)) img = ImageHelper.read_image( image_path, tool=self.configer.get('data', 'image_tool'), mode=self.configer.get('data', 'input_mode')) ori_img_bgr = ImageHelper.get_cv2_bgr(img, mode=self.configer.get( 'data', 'input_mode')) inputs = self.blob_helper.make_input(img, input_size=self.configer.get( 'test', 'input_size'), scale=1.0) with torch.no_grad(): feat_list, bbox, cls = self.det_net(inputs) batch_detections = self.decode( bbox, cls, self.ssd_priorbox_layer(feat_list, self.configer.get('test', 'input_size')), self.configer, [inputs.size(3), inputs.size(2)]) json_dict = self.__get_info_tree( batch_detections[0], ori_img_bgr, [inputs.size(3), inputs.size(2)]) image_canvas = self.det_parser.draw_bboxes( ori_img_bgr.copy(), json_dict, conf_threshold=self.configer.get('vis', 'conf_threshold')) cv2.imwrite(vis_path, image_canvas) cv2.imwrite(raw_path, ori_img_bgr) Log.info('Json Path: {}'.format(json_path)) JsonHelper.save_file(json_dict, json_path) return json_dict @staticmethod def decode(bbox, conf, default_boxes, configer, input_size): loc = bbox.cpu() if configer.get('phase') != 'debug': conf = F.softmax(conf.cpu(), dim=-1) default_boxes = default_boxes.unsqueeze(0).repeat(loc.size(0), 1, 1) variances = [0.1, 0.2] wh = torch.exp(loc[:, :, 2:] * variances[1]) * default_boxes[:, :, 2:] cxcy = loc[:, :, :2] * variances[ 0] * default_boxes[:, :, 2:] + default_boxes[:, :, :2] boxes = torch.cat([cxcy - wh / 2, cxcy + wh / 2], 2) # [b, 8732,4] batch_size, num_priors, _ = boxes.size() boxes = boxes.unsqueeze(2).repeat(1, 1, configer.get('data', 'num_classes'), 1) boxes = boxes.contiguous().view(boxes.size(0), -1, 4) # clip bounding box boxes[:, :, 0::2] = boxes[:, :, 0::2].clamp(min=0, max=input_size[0] - 1) boxes[:, :, 1::2] = boxes[:, :, 1::2].clamp(min=0, max=input_size[1] - 1) labels = torch.Tensor([ i for i in range(configer.get('data', 'num_classes')) ]).to(boxes.device) labels = labels.view(1, 1, -1, 1).repeat(batch_size, num_priors, 1, 1).contiguous().view(batch_size, -1, 1) max_conf = conf.contiguous().view(batch_size, -1, 1) # max_conf, labels = conf.max(2, keepdim=True) # [b, 8732,1] predictions = torch.cat((boxes, max_conf.float(), labels.float()), 2) output = [None for _ in range(len(predictions))] for image_i, image_pred in enumerate(predictions): ids = labels[image_i].squeeze(1).nonzero().contiguous().view(-1, ) if ids.numel() == 0: continue valid_preds = image_pred[ids] valid_preds = valid_preds[ valid_preds[:, 4] > configer.get('vis', 'conf_threshold')] if valid_preds.numel() == 0: continue keep = DetHelper.cls_nms( valid_preds[:, :4], scores=valid_preds[:, 4], labels=valid_preds[:, 5], nms_threshold=configer.get('nms', 'max_threshold'), iou_mode=configer.get('nms', 'mode'), cls_keep_num=configer.get('vis', 'cls_keep_num')) valid_preds = valid_preds[keep] _, order = valid_preds[:, 4].sort(0, descending=True) order = order[:configer.get('vis', 'max_per_image')] output[image_i] = valid_preds[order] return output def __get_info_tree(self, detections, image_raw, input_size): height, width, _ = image_raw.shape in_width, in_height = input_size json_dict = dict() object_list = list() if detections is not None: for x1, y1, x2, y2, conf, cls_pred in detections: object_dict = dict() xmin = x1.cpu().item() / in_width * width ymin = y1.cpu().item() / in_height * height xmax = x2.cpu().item() / in_width * width ymax = y2.cpu().item() / in_height * height object_dict['bbox'] = [xmin, ymin, xmax, ymax] object_dict['label'] = int(cls_pred.cpu().item()) - 1 object_dict['score'] = float('%.2f' % conf.cpu().item()) object_list.append(object_dict) json_dict['objects'] = object_list return json_dict def test(self): base_dir = os.path.join(self.configer.get('project_dir'), 'val/results/det', self.configer.get('dataset')) test_img = self.configer.get('test_img') test_dir = self.configer.get('test_dir') if test_img is None and test_dir is None: Log.error('test_img & test_dir not exists.') exit(1) if test_img is not None and test_dir is not None: Log.error('Either test_img or test_dir.') exit(1) if test_img is not None: base_dir = os.path.join(base_dir, 'test_img') filename = test_img.rstrip().split('/')[-1] json_path = os.path.join( base_dir, 'json', '{}.json'.format('.'.join(filename.split('.')[:-1]))) raw_path = os.path.join(base_dir, 'raw', filename) vis_path = os.path.join( base_dir, 'vis', '{}_vis.png'.format('.'.join(filename.split('.')[:-1]))) FileHelper.make_dirs(json_path, is_file=True) FileHelper.make_dirs(raw_path, is_file=True) FileHelper.make_dirs(vis_path, is_file=True) self.__test_img(test_img, json_path, raw_path, vis_path) else: base_dir = os.path.join(base_dir, 'test_dir', test_dir.rstrip('/').split('/')[-1]) FileHelper.make_dirs(base_dir) for filename in FileHelper.list_dir(test_dir): image_path = os.path.join(test_dir, filename) json_path = os.path.join( base_dir, 'json', '{}.json'.format('.'.join(filename.split('.')[:-1]))) raw_path = os.path.join(base_dir, 'raw', filename) vis_path = os.path.join( base_dir, 'vis', '{}_vis.png'.format('.'.join(filename.split('.')[:-1]))) FileHelper.make_dirs(json_path, is_file=True) FileHelper.make_dirs(raw_path, is_file=True) FileHelper.make_dirs(vis_path, is_file=True) self.__test_img(image_path, json_path, raw_path, vis_path) def debug(self): base_dir = os.path.join(self.configer.get('project_dir'), 'vis/results/det', self.configer.get('dataset'), 'debug') if not os.path.exists(base_dir): os.makedirs(base_dir) count = 0 for i, data_dict in enumerate(self.det_data_loader.get_trainloader()): inputs = data_dict['img'] batch_gt_bboxes = data_dict['bboxes'] batch_gt_labels = data_dict['labels'] input_size = [inputs.size(3), inputs.size(2)] feat_list = list() for stride in self.configer.get('network', 'stride_list'): feat_list.append( torch.zeros((inputs.size(0), 1, input_size[1] // stride, input_size[0] // stride))) bboxes, labels = self.ssd_target_generator(feat_list, batch_gt_bboxes, batch_gt_labels, input_size) eye_matrix = torch.eye(self.configer.get('data', 'num_classes')) labels_target = eye_matrix[labels.view(-1)].view( inputs.size(0), -1, self.configer.get('data', 'num_classes')) batch_detections = self.decode( bboxes, labels_target, self.ssd_priorbox_layer(feat_list, input_size), self.configer, input_size) for j in range(inputs.size(0)): count = count + 1 if count > 20: exit(1) ori_img_bgr = self.blob_helper.tensor2bgr(inputs[j]) self.det_visualizer.vis_default_bboxes( ori_img_bgr, self.ssd_priorbox_layer(feat_list, input_size), labels[j]) json_dict = self.__get_info_tree(batch_detections[j], ori_img_bgr, input_size) image_canvas = self.det_parser.draw_bboxes( ori_img_bgr.copy(), json_dict, conf_threshold=self.configer.get('vis', 'conf_threshold')) cv2.imwrite( os.path.join(base_dir, '{}_{}_vis.png'.format(i, j)), image_canvas) cv2.imshow('main', image_canvas) cv2.waitKey()
class SingleShotDetector(object): """ The class for Single Shot Detector. Include train, val, test & predict. """ def __init__(self, configer): self.configer = configer self.batch_time = AverageMeter() self.data_time = AverageMeter() self.train_losses = AverageMeter() self.val_losses = AverageMeter() self.det_visualizer = DetVisualizer(configer) self.det_loss_manager = DetLossManager(configer) self.det_model_manager = DetModelManager(configer) self.det_data_loader = DetDataLoader(configer) self.ssd_target_generator = SSDTargetGenerator(configer) self.ssd_priorbox_layer = SSDPriorBoxLayer(configer) self.det_running_score = DetRunningScore(configer) self.module_utilizer = ModuleUtilizer(configer) self.optim_scheduler = OptimScheduler(configer) self.data_transformer = DataTransformer(configer) self.det_net = None self.train_loader = None self.val_loader = None self.optimizer = None self.scheduler = None self._init_model() def _init_model(self): self.det_net = self.det_model_manager.object_detector() self.det_net = self.module_utilizer.load_net(self.det_net) self.optimizer, self.scheduler = self.optim_scheduler.init_optimizer( self._get_parameters()) self.train_loader = self.det_data_loader.get_trainloader() self.val_loader = self.det_data_loader.get_valloader() self.det_loss = self.det_loss_manager.get_det_loss('ssd_multibox_loss') def _get_parameters(self): return self.det_net.parameters() def warm_lr(self, batch_len): """Sets the learning rate # Adapted from PyTorch Imagenet example: # https://github.com/pytorch/examples/blob/master/imagenet/main.py """ warm_iters = self.configer.get('lr', 'warm')['warm_epoch'] * batch_len warm_lr = self.configer.get('lr', 'warm')['warm_lr'] if self.configer.get('iters') < warm_iters: lr_delta = (self.configer.get('lr', 'base_lr') - warm_lr) * self.configer.get('iters') / warm_iters lr = warm_lr + lr_delta for param_group in self.optimizer.param_groups: param_group['lr'] = lr def __train(self): """ Train function of every epoch during train phase. """ self.det_net.train() start_time = time.time() # Adjust the learning rate after every epoch. self.configer.plus_one('epoch') self.scheduler.step(self.configer.get('epoch')) # data_tuple: (inputs, heatmap, maskmap, vecmap) for i, data_dict in enumerate(self.train_loader): if not self.configer.is_empty( 'lr', 'is_warm') and self.configer.get('lr', 'is_warm'): self.warm_lr(len(self.train_loader)) inputs = data_dict['img'] batch_gt_bboxes = data_dict['bboxes'] batch_gt_labels = data_dict['labels'] # Change the data type. inputs = self.module_utilizer.to_device(inputs) self.data_time.update(time.time() - start_time) # Forward pass. feat_list, loc, cls = self.det_net(inputs) bboxes, labels = self.ssd_target_generator( feat_list, batch_gt_bboxes, batch_gt_labels, [inputs.size(3), inputs.size(2)]) bboxes, labels = self.module_utilizer.to_device(bboxes, labels) # Compute the loss of the train batch & backward. loss = self.det_loss(loc, bboxes, cls, labels) self.train_losses.update(loss.item(), inputs.size(0)) self.optimizer.zero_grad() loss.backward() self.optimizer.step() # Update the vars of the train phase. self.batch_time.update(time.time() - start_time) start_time = time.time() self.configer.plus_one('iters') # Print the log info & reset the states. if self.configer.get('iters') % self.configer.get( 'solver', 'display_iter') == 0: Log.info( 'Train Epoch: {0}\tTrain Iteration: {1}\t' 'Time {batch_time.sum:.3f}s / {2}iters, ({batch_time.avg:.3f})\t' 'Data load {data_time.sum:.3f}s / {2}iters, ({data_time.avg:3f})\n' 'Learning rate = {3}\tLoss = {loss.val:.8f} (ave = {loss.avg:.8f})\n' .format(self.configer.get('epoch'), self.configer.get('iters'), self.configer.get('solver', 'display_iter'), self.scheduler.get_lr(), batch_time=self.batch_time, data_time=self.data_time, loss=self.train_losses)) self.batch_time.reset() self.data_time.reset() self.train_losses.reset() # Check to val the current model. if self.val_loader is not None and \ (self.configer.get('iters')) % self.configer.get('solver', 'test_interval') == 0: self.__val() def __val(self): """ Validation function during the train phase. """ self.det_net.eval() start_time = time.time() with torch.no_grad(): for j, data_dict in enumerate(self.val_loader): inputs = data_dict['img'] batch_gt_bboxes = data_dict['bboxes'] batch_gt_labels = data_dict['labels'] inputs = self.module_utilizer.to_device(inputs) input_size = [inputs.size(3), inputs.size(2)] # Forward pass. feat_list, loc, cls = self.det_net(inputs) bboxes, labels = self.ssd_target_generator( feat_list, batch_gt_bboxes, batch_gt_labels, input_size) bboxes, labels = self.module_utilizer.to_device(bboxes, labels) # Compute the loss of the val batch. loss = self.det_loss(loc, bboxes, cls, labels) self.val_losses.update(loss.item(), inputs.size(0)) batch_detections = SingleShotDetectorTest.decode( loc, cls, self.ssd_priorbox_layer(feat_list, input_size), self.configer, input_size) batch_pred_bboxes = self.__get_object_list(batch_detections) # batch_pred_bboxes = self._get_gt_object_list(batch_gt_bboxes, batch_gt_labels) self.det_running_score.update(batch_pred_bboxes, batch_gt_bboxes, batch_gt_labels) # Update the vars of the val phase. self.batch_time.update(time.time() - start_time) start_time = time.time() self.module_utilizer.save_net(self.det_net, save_mode='iters') # Print the log info & reset the states. Log.info( 'Test Time {batch_time.sum:.3f}s, ({batch_time.avg:.3f})\t' 'Loss {loss.avg:.8f}\n'.format(batch_time=self.batch_time, loss=self.val_losses)) Log.info('Val mAP: {}'.format(self.det_running_score.get_mAP())) self.det_running_score.reset() self.batch_time.reset() self.val_losses.reset() self.det_net.train() def _get_gt_object_list(self, batch_gt_bboxes, batch_gt_labels): batch_pred_bboxes = list() for i in range(len(batch_gt_bboxes)): object_list = list() if batch_gt_bboxes[i].numel() > 0: for j in range(batch_gt_bboxes[i].size(0)): object_list.append([ batch_gt_bboxes[i][j][0].item(), batch_gt_bboxes[i][j][1].item(), batch_gt_bboxes[i][j][2].item(), batch_gt_bboxes[i][j][3].item(), batch_gt_labels[i][j].item(), 1.0 ]) batch_pred_bboxes.append(object_list) return batch_pred_bboxes def __get_object_list(self, batch_detections): batch_pred_bboxes = list() for idx, detections in enumerate(batch_detections): object_list = list() if detections is not None: for x1, y1, x2, y2, conf, cls_pred in detections: xmin = x1.cpu().item() ymin = y1.cpu().item() xmax = x2.cpu().item() ymax = y2.cpu().item() cf = conf.cpu().item() cls_pred = cls_pred.cpu().item() - 1 object_list.append([ xmin, ymin, xmax, ymax, int(cls_pred), float('%.2f' % cf) ]) batch_pred_bboxes.append(object_list) return batch_pred_bboxes def train(self): cudnn.benchmark = True if self.configer.get('network', 'resume') is not None and self.configer.get( 'network', 'resume_val'): self.__val() while self.configer.get('epoch') < self.configer.get( 'solver', 'max_epoch'): self.__train() if self.configer.get('epoch') == self.configer.get( 'solver', 'max_epoch'): break
class SingleShotDetector(object): """ The class for Single Shot Detector. Include train, val, test & predict. """ def __init__(self, configer): self.configer = configer self.batch_time = AverageMeter() self.data_time = AverageMeter() self.train_losses = AverageMeter() self.val_losses = AverageMeter() self.det_visualizer = DetVisualizer(configer) self.det_loss_manager = DetLossManager(configer) self.det_model_manager = DetModelManager(configer) self.det_data_loader = DetDataLoader(configer) self.module_utilizer = ModuleUtilizer(configer) self.optim_scheduler = OptimScheduler(configer) self.det_net = None self.train_loader = None self.val_loader = None self.optimizer = None self.scheduler = None def init_model(self): self.det_net = self.det_model_manager.object_detector() self.det_net = self.module_utilizer.load_net(self.det_net) self.optimizer, self.scheduler = self.optim_scheduler.init_optimizer( self._get_parameters()) self.train_loader = self.det_data_loader.get_trainloader() self.val_loader = self.det_data_loader.get_valloader() self.det_loss = self.det_loss_manager.get_det_loss('multibox_loss') def _get_parameters(self): return self.det_net.parameters() def __train(self): """ Train function of every epoch during train phase. """ if self.configer.get( 'network', 'resume') is not None and self.configer.get('iters') == 0: self.__val() self.det_net.train() start_time = time.time() # Adjust the learning rate after every epoch. self.configer.plus_one('epoch') self.scheduler.step(self.configer.get('epoch')) # data_tuple: (inputs, heatmap, maskmap, vecmap) for i, (inputs, bboxes, labels) in enumerate(self.train_loader): self.data_time.update(time.time() - start_time) # Change the data type. inputs, bboxes, labels = self.module_utilizer.to_device( inputs, bboxes, labels) # Forward pass. loc, cls = self.det_net(inputs) # Compute the loss of the train batch & backward. loss = self.det_loss(loc, bboxes, cls, labels) self.train_losses.update(loss.item(), inputs.size(0)) self.optimizer.zero_grad() loss.backward() self.optimizer.step() # Update the vars of the train phase. self.batch_time.update(time.time() - start_time) start_time = time.time() self.configer.plus_one('iters') # Print the log info & reset the states. if self.configer.get('iters') % self.configer.get( 'solver', 'display_iter') == 0: Log.info( 'Train Epoch: {0}\tTrain Iteration: {1}\t' 'Time {batch_time.sum:.3f}s / {2}iters, ({batch_time.avg:.3f})\t' 'Data load {data_time.sum:.3f}s / {2}iters, ({data_time.avg:3f})\n' 'Learning rate = {3}\tLoss = {loss.val:.8f} (ave = {loss.avg:.8f})\n' .format(self.configer.get('epoch'), self.configer.get('iters'), self.configer.get('solver', 'display_iter'), self.scheduler.get_lr(), batch_time=self.batch_time, data_time=self.data_time, loss=self.train_losses)) self.batch_time.reset() self.data_time.reset() self.train_losses.reset() # Check to val the current model. if self.val_loader is not None and \ (self.configer.get('iters')) % self.configer.get('solver', 'test_interval') == 0: self.__val() def __val(self): """ Validation function during the train phase. """ self.det_net.eval() start_time = time.time() with torch.no_grad(): for j, (inputs, bboxes, labels) in enumerate(self.val_loader): # Change the data type. inputs, bboxes, labels = self.module_utilizer.to_device( inputs, bboxes, labels) # Forward pass. loc, cls = self.det_net(inputs) # Compute the loss of the val batch. loss = self.det_loss(loc, bboxes, cls, labels) self.val_losses.update(loss.item(), inputs.size(0)) # Update the vars of the val phase. self.batch_time.update(time.time() - start_time) start_time = time.time() self.module_utilizer.save_net(self.det_net, metric='iters') # Print the log info & reset the states. Log.info( 'Test Time {batch_time.sum:.3f}s, ({batch_time.avg:.3f})\t' 'Loss {loss.avg:.8f}\n'.format(batch_time=self.batch_time, loss=self.val_losses)) self.batch_time.reset() self.val_losses.reset() self.det_net.train() def train(self): cudnn.benchmark = True while self.configer.get('epoch') < self.configer.get( 'solver', 'max_epoch'): self.__train() if self.configer.get('epoch') == self.configer.get( 'solver', 'max_epoch'): break
class SingleShotDetectorTest(object): def __init__(self, configer): self.configer = configer self.det_visualizer = DetVisualizer(configer) self.det_model_manager = DetModelManager(configer) self.det_data_loader = DetDataLoader(configer) self.module_utilizer = ModuleUtilizer(configer) self.default_boxes = PriorBoxLayer(configer)() self.device = torch.device('cpu' if self.configer.get('gpu') is None else 'cuda') self.det_net = None def init_model(self): self.det_net = self.det_model_manager.object_detector() self.det_net = self.module_utilizer.load_net(self.det_net) self.det_net.eval() def __test_img(self, image_path, save_path): Log.info('Image Path: {}'.format(image_path)) image_raw = ImageHelper.cv2_open_bgr(image_path) inputs = ImageHelper.bgr2rgb(image_raw) inputs = ImageHelper.resize(inputs, tuple(self.configer.get('data', 'input_size')), Image.CUBIC) inputs = ToTensor()(inputs) inputs = Normalize(mean=self.configer.get('trans_params', 'mean'), std=self.configer.get('trans_params', 'std'))(inputs) with torch.no_grad(): inputs = inputs.unsqueeze(0).to(self.device) bbox, cls = self.det_net(inputs) bbox = bbox.cpu().data.squeeze(0) cls = F.softmax(cls.cpu().squeeze(0), dim=-1).data boxes, lbls, scores, has_obj = self.__decode(bbox, cls) if has_obj: boxes = boxes.cpu().numpy() boxes = np.clip(boxes, 0, 1) lbls = lbls.cpu().numpy() scores = scores.cpu().numpy() img_canvas = self.__draw_box(image_raw, boxes, lbls, scores) else: # print('None obj detected!') img_canvas = image_raw Log.info('Save Path: {}'.format(save_path)) cv2.imwrite(save_path, img_canvas) # Boxes is within 0-1. self.__save_json(save_path, boxes, lbls, scores, image_raw) return image_raw, lbls, scores, boxes, has_obj def __draw_box(self, img_raw, box_list, label_list, conf): img_canvas = img_raw.copy() img_shape = img_canvas.shape for bbox, label, cf in zip(box_list, label_list, conf): if cf < self.configer.get('vis', 'conf_threshold'): continue xmin = int(bbox[0] * img_shape[1]) xmax = int(bbox[2] * img_shape[1]) ymin = int(bbox[1] * img_shape[0]) ymax = int(bbox[3] * img_shape[0]) class_name = self.configer.get('details', 'name_seq')[label - 1] + str(cf) c = self.configer.get('details', 'color_list')[label - 1] cv2.rectangle(img_canvas, (xmin, ymin), (xmax, ymax), color=c, thickness=3) font = cv2.FONT_HERSHEY_SIMPLEX cv2.putText(img_canvas, class_name, (xmin + 5, ymax - 5), font, fontScale=0.5, color=c, thickness=2) return img_canvas def __nms(self, bboxes, scores, mode='union'): """Non maximum suppression. Args: bboxes(tensor): bounding boxes, sized [N,4]. scores(tensor): bbox scores, sized [N,]. threshold(float): overlap threshold. mode(str): 'union' or 'min'. Returns: keep(tensor): selected indices. Ref: https://github.com/rbgirshick/py-faster-rcnn/blob/master/lib/nms/py_cpu_nms.py """ x1 = bboxes[:, 0] y1 = bboxes[:, 1] x2 = bboxes[:, 2] y2 = bboxes[:, 3] areas = (x2 - x1) * (y2 - y1) _, order = scores.sort(0, descending=True) keep = [] while order.numel() > 0: i = order[0] keep.append(i) if order.numel() == 1: break xx1 = x1[order[1:]].clamp(min=x1[i]) yy1 = y1[order[1:]].clamp(min=y1[i]) xx2 = x2[order[1:]].clamp(max=x2[i]) yy2 = y2[order[1:]].clamp(max=y2[i]) w = (xx2-xx1).clamp(min=0) h = (yy2-yy1).clamp(min=0) inter = w*h if self.configer.get('nms', 'mode') == 'union': ovr = inter / (areas[i] + areas[order[1:]] - inter) elif self.configer.get('nms', 'mode') == 'min': ovr = inter / areas[order[1:]].clamp(max=areas[i]) else: raise TypeError('Unknown nms mode: %s.' % mode) ids = (ovr <= self.configer.get('nms', 'overlap_threshold')).nonzero().squeeze() if ids.numel() == 0: break order = order[ids + 1] return torch.LongTensor(keep) def __decode(self, loc, conf): """Transform predicted loc/conf back to real bbox locations and class labels. Args: loc: (tensor) predicted loc, sized [8732, 4]. conf: (tensor) predicted conf, sized [8732, 21]. Returns: boxes: (tensor) bbox locations, sized [#obj, 4]. labels: (tensor) class labels, sized [#obj,1]. """ has_obj = False variances = [0.1, 0.2] wh = torch.exp(loc[:, 2:] * variances[1]) * self.default_boxes[:, 2:] cxcy = loc[:, :2] * variances[0] * self.default_boxes[:, 2:] + self.default_boxes[:, :2] boxes = torch.cat([cxcy - wh / 2, cxcy + wh / 2], 1) # [8732,4] max_conf, labels = conf.max(1) # [8732,1] ids = labels.nonzero() tmp = ids.cpu().numpy() if tmp.__len__() > 0: # print('detected %d objs' % tmp.__len__()) ids = ids.squeeze(1) # [#boxes,] has_obj = True else: print('None obj detected!') return 0, 0, 0, has_obj keep = self.__nms(boxes[ids], max_conf[ids]) return boxes[ids][keep], labels[ids][keep], max_conf[ids][keep], has_obj def __save_json(self, save_path, box_list, label_list, conf, image_raw): file_name = '{}.json'.format(save_path[:-4], ".json") json_file_stream = open(file_name, 'w') size = image_raw.shape json_dict = dict() object_list = list() for bbox, label, cf in zip(box_list, label_list, conf): if cf < self.configer.get('vis', 'conf_threshold'): continue object_dict = dict() xmin = bbox[0] * size[1] xmax = bbox[2] * size[1] ymin = bbox[1] * size[0] ymax = bbox[3] * size[0] object_dict['bbox'] = [xmin, xmax, ymin, ymax] object_dict['label'] = label - 1 object_list.append(object_dict) json_dict['objects'] = object_list json_file_stream.write(json.dumps(json_dict)) json_file_stream.close() def test(self): base_dir = os.path.join(self.configer.get('project_dir'), 'val/results/det', self.configer.get('dataset')) test_img = self.configer.get('test_img') test_dir = self.configer.get('test_dir') if test_img is None and test_dir is None: Log.error('test_img & test_dir not exists.') exit(1) if test_img is not None and test_dir is not None: Log.error('Either test_img or test_dir.') exit(1) if test_img is not None: base_dir = os.path.join(base_dir, 'test_img') if not os.path.exists(base_dir): os.makedirs(base_dir) filename = test_img.rstrip().split('/')[-1] save_path = os.path.join(base_dir, filename) self.__test_img(test_img, save_path) else: base_dir = os.path.join(base_dir, 'test_dir', test_dir.rstrip('/').split('/')[-1]) if not os.path.exists(base_dir): os.makedirs(base_dir) for filename in self.__list_dir(test_dir): image_path = os.path.join(test_dir, filename) save_path = os.path.join(base_dir, filename) if not os.path.exists(os.path.dirname(save_path)): os.makedirs(os.path.dirname(save_path)) self.__test_img(image_path, save_path) def debug(self): base_dir = os.path.join(self.configer.get('project_dir'), 'vis/results/det', self.configer.get('dataset'), 'debug') if not os.path.exists(base_dir): os.makedirs(base_dir) val_data_loader = self.det_data_loader.get_valloader(SSDDataLoader) count = 0 for i, (inputs, bboxes, labels) in enumerate(val_data_loader): for j in range(inputs.size(0)): count = count + 1 if count > 20: exit(1) ori_img = DeNormalize(mean=self.configer.get('trans_params', 'mean'), std=self.configer.get('trans_params', 'std'))(inputs[j]) ori_img = ori_img.numpy().transpose(1, 2, 0) image_bgr = cv2.cvtColor(ori_img, cv2.COLOR_RGB2BGR) eye_matrix = torch.eye(self.configer.get('data', 'num_classes')) labels_target = eye_matrix[labels.view(-1)].view(inputs.size(0), -1, self.configer.get('data', 'num_classes')) boxes, lbls, scores, has_obj = self.__decode(bboxes[j], labels_target[j]) if has_obj: boxes = boxes.cpu().numpy() boxes = np.clip(boxes, 0, 1) lbls = lbls.cpu().numpy() scores = scores.cpu().numpy() img_canvas = self.__draw_box(image_bgr, boxes, lbls, scores) else: # print('None obj detected!') img_canvas = image_bgr # self.det_visualizer.vis_bboxes(paf_avg, image_rgb.astype(np.uint8), name='314{}_{}'.format(i,j)) cv2.imwrite(os.path.join(base_dir, '{}_{}_result.jpg'.format(i, j)), img_canvas) def __list_dir(self, dir_name): filename_list = list() for item in os.listdir(dir_name): if os.path.isdir(os.path.join(dir_name, item)): for filename in os.listdir(os.path.join(dir_name, item)): filename_list.append('{}/{}'.format(item, filename)) else: filename_list.append(item) return filename_list
class SingleShotDetectorTest(object): def __init__(self, configer): self.configer = configer self.det_visualizer = DetVisualizer(configer) self.det_parser = DetParser(configer) self.det_model_manager = DetModelManager(configer) self.det_data_loader = DetDataLoader(configer) self.module_utilizer = ModuleUtilizer(configer) self.default_boxes = PriorBoxLayer(configer)() self.device = torch.device('cpu' if self.configer.get('gpu') is None else 'cuda') self.det_net = None def init_model(self): self.det_net = self.det_model_manager.object_detector() self.det_net = self.module_utilizer.load_net(self.det_net) self.det_net.eval() def __test_img(self, image_path, json_path, raw_path, vis_path): Log.info('Image Path: {}'.format(image_path)) ori_img_rgb = ImageHelper.img2np(ImageHelper.pil_open_rgb(image_path)) ori_img_bgr = ImageHelper.rgb2bgr(ori_img_rgb) inputs = ImageHelper.resize(ori_img_rgb, tuple(self.configer.get('data', 'input_size')), Image.CUBIC) inputs = ToTensor()(inputs) inputs = Normalize(mean=self.configer.get('trans_params', 'mean'), std=self.configer.get('trans_params', 'std'))(inputs) with torch.no_grad(): inputs = inputs.unsqueeze(0).to(self.device) bbox, cls = self.det_net(inputs) bbox = bbox.cpu().data.squeeze(0) cls = F.softmax(cls.cpu().squeeze(0), dim=-1).data boxes, lbls, scores = self.__decode(bbox, cls) json_dict = self.__get_info_tree(boxes, lbls, scores, ori_img_rgb) image_canvas = self.det_parser.draw_bboxes(ori_img_bgr.copy(), json_dict, conf_threshold=self.configer.get('vis', 'conf_threshold')) cv2.imwrite(vis_path, image_canvas) cv2.imwrite(raw_path, ori_img_bgr) Log.info('Json Path: {}'.format(json_path)) JsonHelper.save_file(json_dict, json_path) return json_dict def __nms(self, bboxes, scores, mode='union'): """Non maximum suppression. Args: bboxes(tensor): bounding boxes, sized [N,4]. scores(tensor): bbox scores, sized [N,]. threshold(float): overlap threshold. mode(str): 'union' or 'min'. Returns: keep(tensor): selected indices. Ref: https://github.com/rbgirshick/py-faster-rcnn/blob/master/lib/nms/py_cpu_nms.py """ x1 = bboxes[:, 0] y1 = bboxes[:, 1] x2 = bboxes[:, 2] y2 = bboxes[:, 3] areas = (x2 - x1) * (y2 - y1) _, order = scores.sort(0, descending=True) keep = [] while order.numel() > 0: i = order[0] keep.append(i) if order.numel() == 1: break xx1 = x1[order[1:]].clamp(min=x1[i]) yy1 = y1[order[1:]].clamp(min=y1[i]) xx2 = x2[order[1:]].clamp(max=x2[i]) yy2 = y2[order[1:]].clamp(max=y2[i]) w = (xx2-xx1).clamp(min=0) h = (yy2-yy1).clamp(min=0) inter = w*h if self.configer.get('nms', 'mode') == 'union': ovr = inter / (areas[i] + areas[order[1:]] - inter) elif self.configer.get('nms', 'mode') == 'min': ovr = inter / areas[order[1:]].clamp(max=areas[i]) else: raise TypeError('Unknown nms mode: %s.' % mode) ids = (ovr <= self.configer.get('nms', 'overlap_threshold')).nonzero().squeeze() if ids.numel() == 0: break order = order[ids + 1] return torch.LongTensor(keep) def __decode(self, loc, conf): """Transform predicted loc/conf back to real bbox locations and class labels. Args: loc: (tensor) predicted loc, sized [8732, 4]. conf: (tensor) predicted conf, sized [8732, 21]. Returns: boxes: (tensor) bbox locations, sized [#obj, 4]. labels: (tensor) class labels, sized [#obj,1]. """ variances = [0.1, 0.2] wh = torch.exp(loc[:, 2:] * variances[1]) * self.default_boxes[:, 2:] cxcy = loc[:, :2] * variances[0] * self.default_boxes[:, 2:] + self.default_boxes[:, :2] boxes = torch.cat([cxcy - wh / 2, cxcy + wh / 2], 1) # [8732,4] max_conf, labels = conf.max(1) # [8732,1] ids = labels.nonzero() tmp = ids.cpu().numpy() if tmp.__len__() > 0: # print('detected %d objs' % tmp.__len__()) ids = ids.squeeze(1) # [#boxes,] keep = self.__nms(boxes[ids], max_conf[ids]) pred_bboxes = boxes[ids][keep].cpu().numpy() pred_bboxes = np.clip(pred_bboxes, 0, 1) pred_labels = labels[ids][keep].cpu().numpy() pred_confs = max_conf[ids][keep].cpu().numpy() return pred_bboxes, pred_labels, pred_confs else: Log.info('None object detected!') pred_bboxes = list() pred_labels = list() pred_confs = list() return pred_bboxes, pred_labels, pred_confs def __get_info_tree(self, box_list, label_list, conf, image_raw): height, width, _ = image_raw.shape json_dict = dict() object_list = list() for bbox, label, cf in zip(box_list, label_list, conf): if cf < self.configer.get('vis', 'conf_threshold'): continue object_dict = dict() xmin = bbox[0] * width xmax = bbox[2] * width ymin = bbox[1] * height ymax = bbox[3] * height object_dict['bbox'] = [xmin, ymin, xmax, ymax] object_dict['label'] = label - 1 object_dict['score'] = cf object_list.append(object_dict) json_dict['objects'] = object_list return json_dict def test(self): base_dir = os.path.join(self.configer.get('project_dir'), 'val/results/det', self.configer.get('dataset')) test_img = self.configer.get('test_img') test_dir = self.configer.get('test_dir') if test_img is None and test_dir is None: Log.error('test_img & test_dir not exists.') exit(1) if test_img is not None and test_dir is not None: Log.error('Either test_img or test_dir.') exit(1) if test_img is not None: base_dir = os.path.join(base_dir, 'test_img') filename = test_img.rstrip().split('/')[-1] json_path = os.path.join(base_dir, 'json', '{}.json'.format('.'.join(filename.split('.')[:-1]))) raw_path = os.path.join(base_dir, 'raw', filename) vis_path = os.path.join(base_dir, 'vis', '{}_vis.png'.format('.'.join(filename.split('.')[:-1]))) if not os.path.exists(os.path.dirname(json_path)): os.makedirs(os.path.dirname(json_path)) if not os.path.exists(os.path.dirname(raw_path)): os.makedirs(os.path.dirname(raw_path)) if not os.path.exists(os.path.dirname(vis_path)): os.makedirs(os.path.dirname(vis_path)) self.__test_img(test_img, json_path, raw_path, vis_path) else: base_dir = os.path.join(base_dir, 'test_dir', test_dir.rstrip('/').split('/')[-1]) if not os.path.exists(base_dir): os.makedirs(base_dir) for filename in FileHelper.list_dir(test_dir): image_path = os.path.join(test_dir, filename) json_path = os.path.join(base_dir, 'json', '{}.json'.format('.'.join(filename.split('.')[:-1]))) raw_path = os.path.join(base_dir, 'raw', filename) vis_path = os.path.join(base_dir, 'vis', '{}_vis.png'.format('.'.join(filename.split('.')[:-1]))) if not os.path.exists(os.path.dirname(json_path)): os.makedirs(os.path.dirname(json_path)) if not os.path.exists(os.path.dirname(raw_path)): os.makedirs(os.path.dirname(raw_path)) if not os.path.exists(os.path.dirname(vis_path)): os.makedirs(os.path.dirname(vis_path)) self.__test_img(image_path, json_path, raw_path, vis_path) def debug(self): base_dir = os.path.join(self.configer.get('project_dir'), 'vis/results/det', self.configer.get('dataset'), 'debug') if not os.path.exists(base_dir): os.makedirs(base_dir) val_data_loader = self.det_data_loader.get_valloader() count = 0 for i, (inputs, bboxes, labels) in enumerate(val_data_loader): for j in range(inputs.size(0)): count = count + 1 if count > 20: exit(1) ori_img_rgb = DeNormalize(mean=self.configer.get('trans_params', 'mean'), std=self.configer.get('trans_params', 'std'))(inputs[j]) ori_img_rgb = ori_img_rgb.numpy().transpose(1, 2, 0).astype(np.uint8) ori_img_bgr = cv2.cvtColor(ori_img_rgb, cv2.COLOR_RGB2BGR) eye_matrix = torch.eye(self.configer.get('data', 'num_classes')) labels_target = eye_matrix[labels.view(-1)].view(inputs.size(0), -1, self.configer.get('data', 'num_classes')) boxes, lbls, scores = self.__decode(bboxes[j], labels_target[j]) json_dict = self.__get_info_tree(boxes, lbls, scores, ori_img_rgb) image_canvas = self.det_parser.draw_bboxes(ori_img_bgr.copy(), json_dict, conf_threshold=self.configer.get('vis', 'conf_threshold')) cv2.imwrite(os.path.join(base_dir, '{}_{}_vis.png'.format(i, j)), image_canvas) cv2.imshow('main', image_canvas) cv2.waitKey()
class YOLOv3Test(object): def __init__(self, configer): self.configer = configer self.blob_helper = BlobHelper(configer) self.det_visualizer = DetVisualizer(configer) self.det_parser = DetParser(configer) self.det_model_manager = DetModelManager(configer) self.det_data_loader = DetDataLoader(configer) self.yolo_target_generator = YOLOTargetGenerator(configer) self.module_utilizer = ModuleUtilizer(configer) self.data_transformer = DataTransformer(configer) self.yolo_detection_layer = YOLODetectionLayer(configer) self.device = torch.device( 'cpu' if self.configer.get('gpu') is None else 'cuda') self.det_net = None self._init_model() def _init_model(self): self.det_net = self.det_model_manager.object_detector() self.det_net = self.module_utilizer.load_net(self.det_net) self.det_net.eval() def __test_img(self, image_path, json_path, raw_path, vis_path): Log.info('Image Path: {}'.format(image_path)) img = ImageHelper.read_image( image_path, tool=self.configer.get('data', 'image_tool'), mode=self.configer.get('data', 'input_mode')) ori_img_bgr = ImageHelper.get_cv2_bgr(img, mode=self.configer.get( 'data', 'input_mode')) inputs = self.blob_helper.make_input(img, input_size=self.configer.get( 'data', 'input_size'), scale=1.0) with torch.no_grad(): inputs = inputs.unsqueeze(0).to(self.device) _, _, detections = self.det_net(inputs) batch_detections = self.decode(detections, self.configer) json_dict = self.__get_info_tree(batch_detections[0], ori_img_bgr) image_canvas = self.det_parser.draw_bboxes( ori_img_bgr.copy(), json_dict, conf_threshold=self.configer.get('vis', 'conf_threshold')) ImageHelper.save(ori_img_bgr, raw_path) ImageHelper.save(image_canvas, vis_path) Log.info('Json Path: {}'.format(json_path)) JsonHelper.save_file(json_dict, json_path) return json_dict @staticmethod def decode(batch_pred_bboxes, configer): box_corner = batch_pred_bboxes.new(batch_pred_bboxes.shape) box_corner[:, :, 0] = batch_pred_bboxes[:, :, 0] - batch_pred_bboxes[:, :, 2] / 2 box_corner[:, :, 1] = batch_pred_bboxes[:, :, 1] - batch_pred_bboxes[:, :, 3] / 2 box_corner[:, :, 2] = batch_pred_bboxes[:, :, 0] + batch_pred_bboxes[:, :, 2] / 2 box_corner[:, :, 3] = batch_pred_bboxes[:, :, 1] + batch_pred_bboxes[:, :, 3] / 2 # clip bounding box box_corner[:, :, 0::2] = box_corner[:, :, 0::2].clamp(min=0, max=1.0) box_corner[:, :, 1::2] = box_corner[:, :, 1::2].clamp(min=0, max=1.0) batch_pred_bboxes[:, :, :4] = box_corner[:, :, :4] output = [None for _ in range(len(batch_pred_bboxes))] for image_i, image_pred in enumerate(batch_pred_bboxes): # Filter out confidence scores below threshold conf_mask = (image_pred[:, 4] > configer.get( 'vis', 'obj_threshold')).squeeze() image_pred = image_pred[conf_mask] # If none are remaining => process next image if image_pred.numel() == 0: continue # Get score and class with highest confidence class_conf, class_pred = torch.max( image_pred[:, 5:5 + configer.get('data', 'num_classes')], 1, keepdim=True) # Detections ordered as (x1, y1, x2, y2, obj_conf, class_conf, class_pred) detections = torch.cat( (image_pred[:, :5], class_conf.float(), class_pred.float()), 1) keep_index = DetHelper.cls_nms( image_pred[:, :4], scores=image_pred[:, 4], labels=class_pred.squeeze(1), nms_threshold=configer.get('nms', 'max_threshold'), iou_mode=configer.get('nms', 'mode'), nms_mode='cython_nms') output[image_i] = detections[keep_index] return output def __get_info_tree(self, detections, image_raw): height, width, _ = image_raw.shape json_dict = dict() object_list = list() if detections is not None: for x1, y1, x2, y2, conf, cls_conf, cls_pred in detections: object_dict = dict() xmin = x1.cpu().item() * width ymin = y1.cpu().item() * height xmax = x2.cpu().item() * width ymax = y2.cpu().item() * height object_dict['bbox'] = [xmin, ymin, xmax, ymax] object_dict['label'] = int(cls_pred.cpu().item()) object_dict['score'] = float('%.2f' % conf.cpu().item()) object_list.append(object_dict) json_dict['objects'] = object_list return json_dict def test(self): base_dir = os.path.join(self.configer.get('project_dir'), 'val/results/det', self.configer.get('dataset')) test_img = self.configer.get('test_img') test_dir = self.configer.get('test_dir') if test_img is None and test_dir is None: Log.error('test_img & test_dir not exists.') exit(1) if test_img is not None and test_dir is not None: Log.error('Either test_img or test_dir.') exit(1) if test_img is not None: base_dir = os.path.join(base_dir, 'test_img') filename = test_img.rstrip().split('/')[-1] json_path = os.path.join( base_dir, 'json', '{}.json'.format('.'.join(filename.split('.')[:-1]))) raw_path = os.path.join(base_dir, 'raw', filename) vis_path = os.path.join( base_dir, 'vis', '{}_vis.png'.format('.'.join(filename.split('.')[:-1]))) FileHelper.make_dirs(json_path, is_file=True) FileHelper.make_dirs(raw_path, is_file=True) FileHelper.make_dirs(vis_path, is_file=True) self.__test_img(test_img, json_path, raw_path, vis_path) else: base_dir = os.path.join(base_dir, 'test_dir', test_dir.rstrip('/').split('/')[-1]) if not os.path.exists(base_dir): os.makedirs(base_dir) for filename in FileHelper.list_dir(test_dir): image_path = os.path.join(test_dir, filename) json_path = os.path.join( base_dir, 'json', '{}.json'.format('.'.join(filename.split('.')[:-1]))) raw_path = os.path.join(base_dir, 'raw', filename) vis_path = os.path.join( base_dir, 'vis', '{}_vis.png'.format('.'.join(filename.split('.')[:-1]))) FileHelper.make_dirs(json_path, is_file=True) FileHelper.make_dirs(raw_path, is_file=True) FileHelper.make_dirs(vis_path, is_file=True) self.__test_img(image_path, json_path, raw_path, vis_path) def debug(self): base_dir = os.path.join(self.configer.get('project_dir'), 'vis/results/det', self.configer.get('dataset'), 'debug') if not os.path.exists(base_dir): os.makedirs(base_dir) count = 0 for i, data_dict in enumerate(self.det_data_loader.get_trainloader()): inputs = data_dict['img'] batch_gt_bboxes = data_dict['bboxes'] batch_gt_labels = data_dict['labels'] input_size = [inputs.size(3), inputs.size(2)] feat_list = list() for stride in self.configer.get('network', 'stride_list'): feat_list.append( torch.zeros((inputs.size(0), 1, input_size[1] // stride, input_size[0] // stride))) targets, _, _ = self.yolo_target_generator(feat_list, batch_gt_bboxes, batch_gt_labels, input_size) targets = targets.to(self.device) anchors_list = self.configer.get('gt', 'anchors_list') output_list = list() be_c = 0 for f_index, anchors in enumerate(anchors_list): feat_stride = self.configer.get('network', 'stride_list')[f_index] fm_size = [ int(round(border / feat_stride)) for border in input_size ] num_c = len(anchors) * fm_size[0] * fm_size[1] output_list.append( targets[:, be_c:be_c + num_c].contiguous().view( targets.size(0), len(anchors), fm_size[1], fm_size[0], -1).permute(0, 1, 4, 2, 3).contiguous().view( targets.size(0), -1, fm_size[1], fm_size[0])) be_c += num_c batch_detections = self.decode( self.yolo_detection_layer(output_list)[2], self.configer) for j in range(inputs.size(0)): count = count + 1 if count > 20: exit(1) ori_img_bgr = self.blob_helper.tensor2bgr(inputs[j]) json_dict = self.__get_info_tree(batch_detections[j], ori_img_bgr) image_canvas = self.det_parser.draw_bboxes( ori_img_bgr.copy(), json_dict, conf_threshold=self.configer.get('vis', 'obj_threshold')) cv2.imwrite( os.path.join(base_dir, '{}_{}_vis.png'.format(i, j)), image_canvas) cv2.imshow('main', image_canvas) cv2.waitKey()