def __init__(self, configer):
        self.configer = configer

        self.det_visualizer = DetVisualizer(configer)
        self.det_model_manager = DetModelManager(configer)
        self.det_data_loader = DetDataLoader(configer)
        self.module_utilizer = ModuleUtilizer(configer)
        self.default_boxes = PriorBoxLayer(configer)()
        self.device = torch.device('cpu' if self.configer.get('gpu') is None else 'cuda')
        self.det_net = None
Example #2
0
    def __init__(self, configer):
        self.configer = configer
        self.blob_helper = BlobHelper(configer)
        self.det_visualizer = DetVisualizer(configer)
        self.det_parser = DetParser(configer)
        self.det_model_manager = DetModelManager(configer)
        self.det_data_loader = DetDataLoader(configer)
        self.module_utilizer = ModuleUtilizer(configer)
        self.data_transformer = DataTransformer(configer)
        self.ssd_priorbox_layer = SSDPriorBoxLayer(configer)
        self.ssd_target_generator = SSDTargetGenerator(configer)
        self.device = torch.device(
            'cpu' if self.configer.get('gpu') is None else 'cuda')
        self.det_net = None

        self._init_model()
Example #3
0
    def __init__(self, configer):
        self.configer = configer
        self.batch_time = AverageMeter()
        self.data_time = AverageMeter()
        self.train_losses = AverageMeter()
        self.val_losses = AverageMeter()
        self.det_visualizer = DetVisualizer(configer)
        self.det_loss_manager = DetLossManager(configer)
        self.det_model_manager = DetModelManager(configer)
        self.det_data_loader = DetDataLoader(configer)
        self.module_utilizer = ModuleUtilizer(configer)
        self.optim_scheduler = OptimScheduler(configer)

        self.det_net = None
        self.train_loader = None
        self.val_loader = None
        self.optimizer = None
        self.scheduler = None
Example #4
0
    def __init__(self, configer):
        self.configer = configer
        self.batch_time = AverageMeter()
        self.data_time = AverageMeter()
        self.train_losses = AverageMeter()
        self.val_losses = AverageMeter()
        self.det_visualizer = DetVisualizer(configer)
        self.det_loss_manager = DetLossManager(configer)
        self.det_model_manager = DetModelManager(configer)
        self.det_data_loader = DetDataLoader(configer)
        self.yolo_detection_layer = YOLODetectionLayer(configer)
        self.yolo_target_generator = YOLOTargetGenerator(configer)
        self.det_running_score = DetRunningScore(configer)
        self.module_utilizer = ModuleUtilizer(configer)
        self.optim_scheduler = OptimScheduler(configer)

        self.det_net = None
        self.train_loader = None
        self.val_loader = None
        self.optimizer = None
        self.scheduler = None

        self._init_model()
Example #5
0
    def __init__(self, configer):
        self.configer = configer
        self.batch_time = AverageMeter()
        self.data_time = AverageMeter()
        self.train_losses = AverageMeter()
        self.val_losses = AverageMeter()
        self.det_visualizer = DetVisualizer(configer)
        self.det_loss_manager = DetLossManager(configer)
        self.det_model_manager = DetModelManager(configer)
        self.det_data_loader = DetDataLoader(configer)
        self.ssd_target_generator = SSDTargetGenerator(configer)
        self.ssd_priorbox_layer = SSDPriorBoxLayer(configer)
        self.det_running_score = DetRunningScore(configer)
        self.module_utilizer = ModuleUtilizer(configer)
        self.optim_scheduler = OptimScheduler(configer)
        self.data_transformer = DataTransformer(configer)

        self.det_net = None
        self.train_loader = None
        self.val_loader = None
        self.optimizer = None
        self.scheduler = None

        self._init_model()
Example #6
0
class YOLOv3(object):
    """
      The class for YOLO v3. Include train, val, test & predict.
    """
    def __init__(self, configer):
        self.configer = configer
        self.batch_time = AverageMeter()
        self.data_time = AverageMeter()
        self.train_losses = AverageMeter()
        self.val_losses = AverageMeter()
        self.det_visualizer = DetVisualizer(configer)
        self.det_loss_manager = DetLossManager(configer)
        self.det_model_manager = DetModelManager(configer)
        self.det_data_loader = DetDataLoader(configer)
        self.yolo_detection_layer = YOLODetectionLayer(configer)
        self.yolo_target_generator = YOLOTargetGenerator(configer)
        self.det_running_score = DetRunningScore(configer)
        self.module_utilizer = ModuleUtilizer(configer)
        self.optim_scheduler = OptimScheduler(configer)

        self.det_net = None
        self.train_loader = None
        self.val_loader = None
        self.optimizer = None
        self.scheduler = None

        self._init_model()

    def _init_model(self):
        self.det_net = self.det_model_manager.object_detector()
        self.det_net = self.module_utilizer.load_net(self.det_net)

        self.optimizer, self.scheduler = self.optim_scheduler.init_optimizer(
            self._get_parameters())

        self.train_loader = self.det_data_loader.get_trainloader()
        self.val_loader = self.det_data_loader.get_valloader()

        self.det_loss = self.det_loss_manager.get_det_loss('yolov3_loss')

    def _get_parameters(self):
        lr_1 = []
        lr_10 = []
        params_dict = dict(self.det_net.named_parameters())
        for key, value in params_dict.items():
            if 'backbone.' not in key:
                lr_10.append(value)
            else:
                lr_1.append(value)

        params = [{
            'params': lr_1,
            'lr': self.configer.get('lr', 'base_lr')
        }, {
            'params': lr_10,
            'lr': self.configer.get('lr', 'base_lr') * 10.
        }]

        return params

    def warm_lr(self, batch_len):
        """Sets the learning rate
        # Adapted from PyTorch Imagenet example:
        # https://github.com/pytorch/examples/blob/master/imagenet/main.py
        """
        warm_iters = self.configer.get('lr', 'warm')['warm_epoch'] * batch_len
        if self.configer.get('iters') < warm_iters:
            lr_ratio = (self.configer.get('iters') + 1) / warm_iters

            base_lr_list = self.scheduler.get_lr()
            for param_group, base_lr in zip(self.optimizer.param_groups,
                                            base_lr_list):
                param_group['lr'] = base_lr * lr_ratio

            if self.configer.get('iters') % self.configer.get(
                    'solver', 'display_iter') == 0:
                Log.info('LR: {}'.format([
                    param_group['lr']
                    for param_group in self.optimizer.param_groups
                ]))

    def __train(self):
        """
          Train function of every epoch during train phase.
        """
        self.det_net.train()
        start_time = time.time()
        # Adjust the learning rate after every epoch.
        self.configer.plus_one('epoch')
        self.scheduler.step(self.configer.get('epoch'))

        # data_tuple: (inputs, heatmap, maskmap, vecmap)
        for i, data_dict in enumerate(self.train_loader):
            if not self.configer.is_empty(
                    'lr', 'is_warm') and self.configer.get('lr', 'is_warm'):
                self.warm_lr(len(self.train_loader))

            inputs = data_dict['img']
            batch_gt_bboxes = data_dict['bboxes']
            batch_gt_labels = data_dict['labels']
            input_size = [inputs.size(3), inputs.size(2)]

            self.data_time.update(time.time() - start_time)
            # Change the data type.
            inputs = self.module_utilizer.to_device(inputs)

            # Forward pass.
            feat_list, predictions, _ = self.det_net(inputs)

            targets, objmask, noobjmask = self.yolo_target_generator(
                feat_list, batch_gt_bboxes, batch_gt_labels, input_size)
            targets, objmask, noobjmask = self.module_utilizer.to_device(
                targets, objmask, noobjmask)
            # Compute the loss of the train batch & backward.
            loss = self.det_loss(predictions, targets, objmask, noobjmask)

            self.train_losses.update(loss.item(), inputs.size(0))

            self.optimizer.zero_grad()
            loss.backward()
            self.optimizer.step()

            # Update the vars of the train phase.
            self.batch_time.update(time.time() - start_time)
            start_time = time.time()
            self.configer.plus_one('iters')

            # Print the log info & reset the states.
            if self.configer.get('iters') % self.configer.get(
                    'solver', 'display_iter') == 0:
                Log.info(
                    'Train Epoch: {0}\tTrain Iteration: {1}\t'
                    'Time {batch_time.sum:.3f}s / {2}iters, ({batch_time.avg:.3f})\t'
                    'Data load {data_time.sum:.3f}s / {2}iters, ({data_time.avg:3f})\n'
                    'Learning rate = {3}\tLoss = {loss.val:.8f} (ave = {loss.avg:.8f})\n'
                    .format(self.configer.get('epoch'),
                            self.configer.get('iters'),
                            self.configer.get('solver', 'display_iter'),
                            self.scheduler.get_lr(),
                            batch_time=self.batch_time,
                            data_time=self.data_time,
                            loss=self.train_losses))
                self.batch_time.reset()
                self.data_time.reset()
                self.train_losses.reset()

            # Check to val the current model.
            if self.val_loader is not None and \
               (self.configer.get('iters')) % self.configer.get('solver', 'test_interval') == 0:
                self.__val()

    def __val(self):
        """
          Validation function during the train phase.
        """
        self.det_net.eval()
        start_time = time.time()
        with torch.no_grad():
            for i, data_dict in enumerate(self.val_loader):
                inputs = data_dict['img']
                batch_gt_bboxes = data_dict['bboxes']
                batch_gt_labels = data_dict['labels']
                input_size = [inputs.size(3), inputs.size(2)]
                # Forward pass.
                inputs = self.module_utilizer.to_device(inputs)
                feat_list, predictions, detections = self.det_net(inputs)

                targets, objmask, noobjmask = self.yolo_target_generator(
                    feat_list, batch_gt_bboxes, batch_gt_labels, input_size)
                targets, objmask, noobjmask = self.module_utilizer.to_device(
                    targets, objmask, noobjmask)

                # Compute the loss of the val batch.
                loss = self.det_loss(predictions, targets, objmask, noobjmask)
                self.val_losses.update(loss.item(), inputs.size(0))

                batch_detections = YOLOv3Test.decode(detections, self.configer)
                batch_pred_bboxes = self.__get_object_list(
                    batch_detections, input_size)

                self.det_running_score.update(batch_pred_bboxes,
                                              batch_gt_bboxes, batch_gt_labels)

                # Update the vars of the val phase.
                self.batch_time.update(time.time() - start_time)
                start_time = time.time()

            self.module_utilizer.save_net(self.det_net, save_mode='iters')
            # Print the log info & reset the states.
            Log.info(
                'Test Time {batch_time.sum:.3f}s, ({batch_time.avg:.3f})\t'
                'Loss {loss.avg:.8f}\n'.format(batch_time=self.batch_time,
                                               loss=self.val_losses))
            Log.info('Val mAP: {}'.format(self.det_running_score.get_mAP()))
            self.det_running_score.reset()
            self.batch_time.reset()
            self.val_losses.reset()
            self.det_net.train()

    def __get_object_list(self, batch_detections, input_size):
        batch_pred_bboxes = list()
        for idx, detections in enumerate(batch_detections):
            object_list = list()
            if detections is not None:
                for x1, y1, x2, y2, conf, cls_conf, cls_pred in detections:
                    xmin = x1.cpu().item() * input_size[0]
                    ymin = y1.cpu().item() * input_size[1]
                    xmax = x2.cpu().item() * input_size[0]
                    ymax = y2.cpu().item() * input_size[1]
                    cf = conf.cpu().item()
                    cls_pred = cls_pred.cpu().item()
                    object_list.append([
                        xmin, ymin, xmax, ymax,
                        int(cls_pred),
                        float('%.2f' % cf)
                    ])

            batch_pred_bboxes.append(object_list)

        return batch_pred_bboxes

    def train(self):
        cudnn.benchmark = True
        if self.configer.get('network',
                             'resume') is not None and self.configer.get(
                                 'network', 'resume_val'):
            self.__val()

        while self.configer.get('epoch') < self.configer.get(
                'solver', 'max_epoch'):
            self.__train()
            if self.configer.get('epoch') == self.configer.get(
                    'solver', 'max_epoch'):
                break
Example #7
0
class FastRCNNTest(object):
    def __init__(self, configer):
        self.configer = configer
        self.blob_helper = BlobHelper(configer)
        self.det_visualizer = DetVisualizer(configer)
        self.det_parser = DetParser(configer)
        self.det_model_manager = DetModelManager(configer)
        self.det_data_loader = DetDataLoader(configer)
        self.roi_sampler = FRRoiSampleLayer(configer)
        self.module_utilizer = ModuleUtilizer(configer)
        self.rpn_target_generator = RPNTargetGenerator(configer)
        self.fr_priorbox_layer = FRPriorBoxLayer(configer)
        self.fr_roi_generator = FRRoiGenerator(configer)
        self.data_transformer = DataTransformer(configer)
        self.device = torch.device(
            'cpu' if self.configer.get('gpu') is None else 'cuda')
        self.det_net = None

        self._init_model()

    def _init_model(self):
        self.det_net = self.det_model_manager.object_detector()
        self.det_net = self.module_utilizer.load_net(self.det_net)
        self.det_net.eval()

    def __test_img(self, image_path, json_path, raw_path, vis_path):
        Log.info('Image Path: {}'.format(image_path))
        img = ImageHelper.read_image(
            image_path,
            tool=self.configer.get('data', 'image_tool'),
            mode=self.configer.get('data', 'input_mode'))
        ori_img_bgr = ImageHelper.get_cv2_bgr(img,
                                              mode=self.configer.get(
                                                  'data', 'input_mode'))
        img, scale = BoundResize()(img)
        inputs = self.blob_helper.make_input(img, scale=1.0)
        with torch.no_grad():
            # Forward pass.
            test_group = self.det_net(inputs, scale)

            test_indices_and_rois, test_roi_locs, test_roi_scores, test_rois_num = test_group

        batch_detections = self.decode(test_roi_locs, test_roi_scores,
                                       test_indices_and_rois,
                                       test_rois_num, self.configer,
                                       ImageHelper.get_size(img))
        json_dict = self.__get_info_tree(batch_detections[0],
                                         ori_img_bgr,
                                         scale=scale)

        image_canvas = self.det_parser.draw_bboxes(
            ori_img_bgr.copy(),
            json_dict,
            conf_threshold=self.configer.get('vis', 'conf_threshold'))
        cv2.imwrite(vis_path, image_canvas)
        cv2.imwrite(raw_path, ori_img_bgr)

        Log.info('Json Path: {}'.format(json_path))
        JsonHelper.save_file(json_dict, json_path)
        return json_dict

    @staticmethod
    def decode(roi_locs, roi_scores, indices_and_rois, test_rois_num, configer,
               input_size):
        roi_locs = roi_locs.cpu()
        roi_scores = roi_scores.cpu()
        indices_and_rois = indices_and_rois.cpu()
        num_classes = configer.get('data', 'num_classes')
        mean = torch.Tensor(configer.get(
            'roi', 'loc_normalize_mean')).repeat(num_classes)[None]
        std = torch.Tensor(configer.get(
            'roi', 'loc_normalize_std')).repeat(num_classes)[None]
        mean = mean.to(roi_locs.device)
        std = std.to(roi_locs.device)

        roi_locs = (roi_locs * std + mean)
        roi_locs = roi_locs.contiguous().view(-1, num_classes, 4)
        # roi_locs = roi_locs[:,:, [1, 0, 3, 2]]

        rois = indices_and_rois[:, 1:]
        rois = rois.contiguous().view(-1, 1, 4).expand_as(roi_locs)
        wh = torch.exp(roi_locs[:, :, 2:]) * (rois[:, :, 2:] - rois[:, :, :2])
        cxcy = roi_locs[:, :, :2] * (rois[:, :, 2:] - rois[:, :, :2]) + (
            rois[:, :, :2] + rois[:, :, 2:]) / 2
        dst_bbox = torch.cat([cxcy - wh / 2, cxcy + wh / 2], 2)  # [b, 8732,4]

        # clip bounding box
        dst_bbox[:, :, 0::2] = (dst_bbox[:, :,
                                         0::2]).clamp(min=0,
                                                      max=input_size[0] - 1)
        dst_bbox[:, :, 1::2] = (dst_bbox[:, :,
                                         1::2]).clamp(min=0,
                                                      max=input_size[1] - 1)

        if configer.get('phase') != 'debug':
            cls_prob = F.softmax(roi_scores, dim=1)
        else:
            cls_prob = roi_scores

        cls_label = torch.LongTensor([i for i in range(num_classes)])\
            .contiguous().view(1, num_classes).repeat(indices_and_rois.size(0), 1)

        output = [None for _ in range(test_rois_num.size(0))]
        start_index = 0
        for i in range(test_rois_num.size(0)):
            # batch_index = (indices_and_rois[:, 0] == i).nonzero().contiguous().view(-1,)
            # tmp_dst_bbox = dst_bbox[batch_index]
            # tmp_cls_prob = cls_prob[batch_index]
            # tmp_cls_label = cls_label[batch_index]
            tmp_dst_bbox = dst_bbox[start_index:start_index + test_rois_num[i]]
            tmp_cls_prob = cls_prob[start_index:start_index + test_rois_num[i]]
            tmp_cls_label = cls_label[start_index:start_index +
                                      test_rois_num[i]]
            start_index += test_rois_num[i]

            mask = (tmp_cls_prob > configer.get(
                'vis', 'conf_threshold')) & (tmp_cls_label > 0)

            tmp_dst_bbox = tmp_dst_bbox[mask].contiguous().view(-1, 4)
            if tmp_dst_bbox.numel() == 0:
                continue

            tmp_cls_prob = tmp_cls_prob[mask].contiguous().view(
                -1, ).unsqueeze(1)
            tmp_cls_label = tmp_cls_label[mask].contiguous().view(
                -1, ).unsqueeze(1)

            valid_preds = torch.cat(
                (tmp_dst_bbox, tmp_cls_prob.float(), tmp_cls_label.float()), 1)

            keep = DetHelper.cls_nms(valid_preds[:, :4],
                                     scores=valid_preds[:, 4],
                                     labels=valid_preds[:, 5],
                                     nms_threshold=configer.get(
                                         'nms', 'overlap_threshold'),
                                     iou_mode=configer.get('nms', 'mode'))

            output[i] = valid_preds[keep]

        return output

    def __make_tensor(self, gt_bboxes, gt_labels):
        len_arr = [gt_labels[i].numel() for i in range(len(gt_bboxes))]
        batch_maxlen = max(max(len_arr), 1)
        target_bboxes = torch.zeros((len(gt_bboxes), batch_maxlen, 4)).float()
        target_labels = torch.zeros((len(gt_bboxes), batch_maxlen)).long()
        for i in range(len(gt_bboxes)):
            target_bboxes[i, :len_arr[i], :] = gt_bboxes[i]
            target_labels[i, :len_arr[i]] = gt_labels[i]

        target_bboxes_num = torch.Tensor(len_arr).long()
        return target_bboxes, target_bboxes_num, target_labels

    def __get_info_tree(self, detections, image_raw, scale=1.0):
        height, width, _ = image_raw.shape
        json_dict = dict()
        object_list = list()
        if detections is not None:
            for x1, y1, x2, y2, conf, cls_pred in detections:
                object_dict = dict()
                xmin = min(x1.cpu().item() / scale, width - 1)
                ymin = min(y1.cpu().item() / scale, height - 1)
                xmax = min(x2.cpu().item() / scale, width - 1)
                ymax = min(y2.cpu().item() / scale, height - 1)
                object_dict['bbox'] = [xmin, ymin, xmax, ymax]
                object_dict['label'] = int(cls_pred.cpu().item()) - 1
                object_dict['score'] = float('%.2f' % conf.cpu().item())

                object_list.append(object_dict)

        json_dict['objects'] = object_list

        return json_dict

    def test(self):
        base_dir = os.path.join(self.configer.get('project_dir'),
                                'val/results/det',
                                self.configer.get('dataset'))

        test_img = self.configer.get('test_img')
        test_dir = self.configer.get('test_dir')
        if test_img is None and test_dir is None:
            Log.error('test_img & test_dir not exists.')
            exit(1)

        if test_img is not None and test_dir is not None:
            Log.error('Either test_img or test_dir.')
            exit(1)

        if test_img is not None:
            base_dir = os.path.join(base_dir, 'test_img')
            filename = test_img.rstrip().split('/')[-1]
            json_path = os.path.join(
                base_dir, 'json',
                '{}.json'.format('.'.join(filename.split('.')[:-1])))
            raw_path = os.path.join(base_dir, 'raw', filename)
            vis_path = os.path.join(
                base_dir, 'vis',
                '{}_vis.png'.format('.'.join(filename.split('.')[:-1])))
            FileHelper.make_dirs(json_path, is_file=True)
            FileHelper.make_dirs(raw_path, is_file=True)
            FileHelper.make_dirs(vis_path, is_file=True)
            self.__test_img(test_img, json_path, raw_path, vis_path)

        else:
            base_dir = os.path.join(base_dir, 'test_dir',
                                    test_dir.rstrip('/').split('/')[-1])
            FileHelper.make_dirs(base_dir)

            for filename in FileHelper.list_dir(test_dir):
                image_path = os.path.join(test_dir, filename)
                json_path = os.path.join(
                    base_dir, 'json',
                    '{}.json'.format('.'.join(filename.split('.')[:-1])))
                raw_path = os.path.join(base_dir, 'raw', filename)
                vis_path = os.path.join(
                    base_dir, 'vis',
                    '{}_vis.png'.format('.'.join(filename.split('.')[:-1])))
                FileHelper.make_dirs(json_path, is_file=True)
                FileHelper.make_dirs(raw_path, is_file=True)
                FileHelper.make_dirs(vis_path, is_file=True)

                self.__test_img(image_path, json_path, raw_path, vis_path)

    def debug(self):
        base_dir = os.path.join(self.configer.get('project_dir'),
                                'vis/results/det',
                                self.configer.get('dataset'), 'debug')

        if not os.path.exists(base_dir):
            os.makedirs(base_dir)

        count = 0
        for i, data_dict in enumerate(self.det_data_loader.get_trainloader()):
            img_scale = data_dict['imgscale']
            inputs = data_dict['img']
            batch_gt_bboxes = data_dict['bboxes']
            # batch_gt_bboxes = ResizeBoxes()(inputs, data_dict['bboxes'])
            batch_gt_labels = data_dict['labels']

            input_size = [inputs.size(3), inputs.size(2)]
            feat_list = list()
            for stride in self.configer.get('rpn', 'stride_list'):
                feat_list.append(
                    torch.zeros((inputs.size(0), 1, input_size[1] // stride,
                                 input_size[0] // stride)))

            gt_rpn_locs, gt_rpn_labels = self.rpn_target_generator(
                feat_list, batch_gt_bboxes, input_size)
            eye_matrix = torch.eye(2)
            gt_rpn_labels[gt_rpn_labels == -1] = 0
            gt_rpn_scores = eye_matrix[gt_rpn_labels.view(-1)].view(
                inputs.size(0), -1, 2)
            test_indices_and_rois, _ = self.fr_roi_generator(
                feat_list, gt_rpn_locs, gt_rpn_scores,
                self.configer.get('rpn', 'n_test_pre_nms'),
                self.configer.get('rpn', 'n_test_post_nms'), input_size,
                img_scale)

            gt_bboxes, gt_nums, gt_labels = self.__make_tensor(
                batch_gt_bboxes, batch_gt_labels)
            sample_rois, gt_roi_locs, gt_roi_labels = self.roi_sampler(
                test_indices_and_rois, gt_bboxes, gt_nums, gt_labels,
                input_size)

            self.det_visualizer.vis_rois(inputs,
                                         sample_rois[gt_roi_labels > 0])
            gt_cls_roi_locs = torch.zeros(
                (gt_roi_locs.size(0), self.configer.get('data',
                                                        'num_classes'), 4))
            gt_cls_roi_locs[torch.arange(0, sample_rois.size(0)).long(),
                            gt_roi_labels.long()] = gt_roi_locs
            gt_cls_roi_locs = gt_cls_roi_locs.contiguous().view(
                -1, 4 * self.configer.get('data', 'num_classes'))
            eye_matrix = torch.eye(self.configer.get('data', 'num_classes'))

            gt_roi_scores = eye_matrix[gt_roi_labels.view(-1)].view(
                gt_roi_labels.size(0),
                self.configer.get('data', 'num_classes'))
            test_rois_num = torch.zeros((len(gt_bboxes), )).long()
            for batch_id in range(len(gt_bboxes)):
                batch_index = (
                    sample_rois[:, 0] == batch_id).nonzero().contiguous().view(
                        -1, )
                test_rois_num[batch_id] = batch_index.numel()

            batch_detections = FastRCNNTest.decode(gt_cls_roi_locs,
                                                   gt_roi_scores, sample_rois,
                                                   test_rois_num,
                                                   self.configer, input_size)

            for j in range(inputs.size(0)):
                count = count + 1
                if count > 20:
                    exit(1)

                ori_img_bgr = self.blob_helper.tensor2bgr(inputs[j])

                self.det_visualizer.vis_default_bboxes(
                    ori_img_bgr, self.fr_priorbox_layer(feat_list, input_size),
                    gt_rpn_labels[j])
                json_dict = self.__get_info_tree(batch_detections[j],
                                                 ori_img_bgr)
                image_canvas = self.det_parser.draw_bboxes(
                    ori_img_bgr.copy(),
                    json_dict,
                    conf_threshold=self.configer.get('vis', 'conf_threshold'))

                cv2.imwrite(
                    os.path.join(base_dir, '{}_{}_vis.png'.format(i, j)),
                    image_canvas)
                cv2.imshow('main', image_canvas)
                cv2.waitKey()
Example #8
0
class FasterRCNN(object):
    """
      The class for Single Shot Detector. Include train, val, test & predict.
    """
    def __init__(self, configer):
        self.configer = configer
        self.batch_time = AverageMeter()
        self.data_time = AverageMeter()
        self.train_losses = AverageMeter()
        self.val_losses = AverageMeter()
        self.det_visualizer = DetVisualizer(configer)
        self.det_loss_manager = DetLossManager(configer)
        self.det_model_manager = DetModelManager(configer)
        self.det_data_loader = DetDataLoader(configer)
        self.fr_priorbox_layer = FRPriorBoxLayer(configer)
        self.rpn_target_generator = RPNTargetGenerator(configer)
        self.det_running_score = DetRunningScore(configer)
        self.module_utilizer = ModuleUtilizer(configer)
        self.optim_scheduler = OptimScheduler(configer)

        self.det_net = None
        self.train_loader = None
        self.val_loader = None
        self.optimizer = None
        self.scheduler = None

        self._init_model()

    def _init_model(self):
        self.det_net = self.det_model_manager.object_detector()
        self.det_net = self.module_utilizer.load_net(self.det_net)

        self.optimizer, self.scheduler = self.optim_scheduler.init_optimizer(
            self._get_parameters())

        self.train_loader = self.det_data_loader.get_trainloader()
        self.val_loader = self.det_data_loader.get_valloader()

        self.fr_loss = self.det_loss_manager.get_det_loss('fr_loss')

    def _get_parameters(self):
        lr_1 = []
        lr_2 = []
        params_dict = dict(self.det_net.named_parameters())
        for key, value in params_dict.items():
            if value.requires_grad:
                if 'bias' in key:
                    lr_2.append(value)
                else:
                    lr_1.append(value)

        params = [{
            'params': lr_1,
            'lr': self.configer.get('lr', 'base_lr')
        }, {
            'params': lr_2,
            'lr': self.configer.get('lr', 'base_lr') * 2.,
            'weight_decay': 0
        }]
        return params

    def __train(self):
        """
          Train function of every epoch during train phase.
        """
        self.det_net.train()
        start_time = time.time()
        # Adjust the learning rate after every epoch.
        self.configer.plus_one('epoch')
        self.scheduler.step(self.configer.get('epoch'))

        for i, data_dict in enumerate(self.train_loader):
            inputs = data_dict['img']
            img_scale = data_dict['imgscale']
            batch_gt_bboxes = data_dict['bboxes']
            batch_gt_labels = data_dict['labels']
            self.data_time.update(time.time() - start_time)
            # Change the data type.
            gt_bboxes, gt_nums, gt_labels = self.__make_tensor(
                batch_gt_bboxes, batch_gt_labels)

            gt_bboxes, gt_num, gt_labels = self.module_utilizer.to_device(
                gt_bboxes, gt_nums, gt_labels)
            inputs = self.module_utilizer.to_device(inputs)
            # Forward pass.
            feat_list, train_group = self.det_net(inputs, gt_bboxes, gt_num,
                                                  gt_labels, img_scale)
            gt_rpn_locs, gt_rpn_labels = self.rpn_target_generator(
                feat_list, batch_gt_bboxes,
                [inputs.size(3), inputs.size(2)])
            gt_rpn_locs, gt_rpn_labels = self.module_utilizer.to_device(
                gt_rpn_locs, gt_rpn_labels)

            rpn_locs, rpn_scores, sample_roi_locs, sample_roi_scores, gt_roi_bboxes, gt_roi_labels = train_group

            # Compute the loss of the train batch & backward.
            loss = self.fr_loss(
                [rpn_locs, rpn_scores, sample_roi_locs, sample_roi_scores],
                [gt_rpn_locs, gt_rpn_labels, gt_roi_bboxes, gt_roi_labels])

            self.train_losses.update(loss.item(), inputs.size(0))

            self.optimizer.zero_grad()
            loss.backward()
            self.module_utilizer.clip_grad(self.det_net, 10.)
            self.optimizer.step()

            # Update the vars of the train phase.
            self.batch_time.update(time.time() - start_time)
            start_time = time.time()
            self.configer.plus_one('iters')

            # Print the log info & reset the states.
            if self.configer.get('iters') % self.configer.get(
                    'solver', 'display_iter') == 0:
                Log.info(
                    'Train Epoch: {0}\tTrain Iteration: {1}\t'
                    'Time {batch_time.sum:.3f}s / {2}iters, ({batch_time.avg:.3f})\t'
                    'Data load {data_time.sum:.3f}s / {2}iters, ({data_time.avg:3f})\n'
                    'Learning rate = {3}\tLoss = {loss.val:.8f} (ave = {loss.avg:.8f})\n'
                    .format(self.configer.get('epoch'),
                            self.configer.get('iters'),
                            self.configer.get('solver', 'display_iter'),
                            self.scheduler.get_lr(),
                            batch_time=self.batch_time,
                            data_time=self.data_time,
                            loss=self.train_losses))
                self.batch_time.reset()
                self.data_time.reset()
                self.train_losses.reset()

            # Check to val the current model.
            if self.val_loader is not None and \
               (self.configer.get('iters')) % self.configer.get('solver', 'test_interval') == 0:
                self.__val()

    def __val(self):
        """
          Validation function during the train phase.
        """
        self.det_net.eval()
        start_time = time.time()
        with torch.no_grad():
            for j, data_dict in enumerate(self.val_loader):
                inputs = data_dict['img']
                img_scale = data_dict['imgscale']
                batch_gt_bboxes = data_dict['bboxes']
                batch_gt_labels = data_dict['labels']
                # Change the data type.
                gt_bboxes, gt_nums, gt_labels = self.__make_tensor(
                    batch_gt_bboxes, batch_gt_labels)
                gt_bboxes, gt_num, gt_labels = self.module_utilizer.to_device(
                    gt_bboxes, gt_nums, gt_labels)
                inputs = self.module_utilizer.to_device(inputs)

                # Forward pass.
                feat_list, train_group, test_group = self.det_net(
                    inputs, gt_bboxes, gt_nums, gt_labels, img_scale)
                rpn_locs, rpn_scores, sample_roi_locs, sample_roi_scores, gt_roi_bboxes, gt_roi_labels = train_group

                gt_rpn_locs, gt_rpn_labels = self.rpn_target_generator(
                    feat_list, batch_gt_bboxes,
                    [inputs.size(3), inputs.size(2)])
                gt_rpn_locs, gt_rpn_labels = self.module_utilizer.to_device(
                    gt_rpn_locs, gt_rpn_labels)

                # Compute the loss of the train batch & backward.
                loss = self.fr_loss(
                    [rpn_locs, rpn_scores, sample_roi_locs, sample_roi_scores],
                    [gt_rpn_locs, gt_rpn_labels, gt_roi_bboxes, gt_roi_labels])

                self.val_losses.update(loss.item(), inputs.size(0))
                test_indices_and_rois, test_roi_locs, test_roi_scores, test_rois_num = test_group
                batch_detections = FastRCNNTest.decode(
                    test_roi_locs, test_roi_scores, test_indices_and_rois,
                    test_rois_num, self.configer,
                    [inputs.size(3), inputs.size(2)])
                batch_pred_bboxes = self.__get_object_list(batch_detections)
                self.det_running_score.update(batch_pred_bboxes,
                                              batch_gt_bboxes, batch_gt_labels)

                # Update the vars of the val phase.
                self.batch_time.update(time.time() - start_time)
                start_time = time.time()

            self.module_utilizer.save_net(self.det_net, save_mode='iters')
            # Print the log info & reset the states.
            Log.info(
                'Test Time {batch_time.sum:.3f}s, ({batch_time.avg:.3f})\t'
                'Loss {loss.avg:.8f}\n'.format(batch_time=self.batch_time,
                                               loss=self.val_losses))
            Log.info('Val mAP: {}\n'.format(self.det_running_score.get_mAP()))
            self.det_running_score.reset()
            self.batch_time.reset()
            self.val_losses.reset()
            self.det_net.train()

    def __make_tensor(self, gt_bboxes, gt_labels):
        len_arr = [gt_labels[i].numel() for i in range(len(gt_bboxes))]
        batch_maxlen = max(max(len_arr), 1)
        target_bboxes = torch.zeros((len(gt_bboxes), batch_maxlen, 4)).float()
        target_labels = torch.zeros((len(gt_bboxes), batch_maxlen)).long()
        for i in range(len(gt_bboxes)):
            if len_arr[i] == 0:
                continue

            target_bboxes[i, :len_arr[i], :] = gt_bboxes[i].clone()
            target_labels[i, :len_arr[i]] = gt_labels[i].clone()

        target_bboxes_num = torch.Tensor(len_arr).long()
        return target_bboxes, target_bboxes_num, target_labels

    def __get_object_list(self, batch_detections):
        batch_pred_bboxes = list()
        for idx, detections in enumerate(batch_detections):
            object_list = list()
            if detections is not None:
                for x1, y1, x2, y2, conf, cls_pred in detections:
                    xmin = x1.cpu().item()
                    ymin = y1.cpu().item()
                    xmax = x2.cpu().item()
                    ymax = y2.cpu().item()
                    cf = conf.cpu().item()
                    cls_pred = int(cls_pred.cpu().item()) - 1
                    object_list.append(
                        [xmin, ymin, xmax, ymax, cls_pred,
                         float('%.2f' % cf)])

            batch_pred_bboxes.append(object_list)

        return batch_pred_bboxes

    def train(self):
        cudnn.benchmark = True
        if self.configer.get('network',
                             'resume') is not None and self.configer.get(
                                 'network', 'resume_val'):
            self.__val()

        while self.configer.get('epoch') < self.configer.get(
                'solver', 'max_epoch'):
            self.__train()
            if self.configer.get('epoch') == self.configer.get(
                    'solver', 'max_epoch'):
                break
Example #9
0
class SingleShotDetectorTest(object):
    def __init__(self, configer):
        self.configer = configer
        self.blob_helper = BlobHelper(configer)
        self.det_visualizer = DetVisualizer(configer)
        self.det_parser = DetParser(configer)
        self.det_model_manager = DetModelManager(configer)
        self.det_data_loader = DetDataLoader(configer)
        self.module_utilizer = ModuleUtilizer(configer)
        self.data_transformer = DataTransformer(configer)
        self.ssd_priorbox_layer = SSDPriorBoxLayer(configer)
        self.ssd_target_generator = SSDTargetGenerator(configer)
        self.device = torch.device(
            'cpu' if self.configer.get('gpu') is None else 'cuda')
        self.det_net = None

        self._init_model()

    def _init_model(self):
        self.det_net = self.det_model_manager.object_detector()
        self.det_net = self.module_utilizer.load_net(self.det_net)
        self.det_net.eval()

    def __test_img(self, image_path, json_path, raw_path, vis_path):
        Log.info('Image Path: {}'.format(image_path))
        img = ImageHelper.read_image(
            image_path,
            tool=self.configer.get('data', 'image_tool'),
            mode=self.configer.get('data', 'input_mode'))
        ori_img_bgr = ImageHelper.get_cv2_bgr(img,
                                              mode=self.configer.get(
                                                  'data', 'input_mode'))

        inputs = self.blob_helper.make_input(img,
                                             input_size=self.configer.get(
                                                 'test', 'input_size'),
                                             scale=1.0)

        with torch.no_grad():
            feat_list, bbox, cls = self.det_net(inputs)

        batch_detections = self.decode(
            bbox, cls,
            self.ssd_priorbox_layer(feat_list,
                                    self.configer.get('test', 'input_size')),
            self.configer, [inputs.size(3), inputs.size(2)])
        json_dict = self.__get_info_tree(
            batch_detections[0], ori_img_bgr,
            [inputs.size(3), inputs.size(2)])

        image_canvas = self.det_parser.draw_bboxes(
            ori_img_bgr.copy(),
            json_dict,
            conf_threshold=self.configer.get('vis', 'conf_threshold'))
        cv2.imwrite(vis_path, image_canvas)
        cv2.imwrite(raw_path, ori_img_bgr)

        Log.info('Json Path: {}'.format(json_path))
        JsonHelper.save_file(json_dict, json_path)
        return json_dict

    @staticmethod
    def decode(bbox, conf, default_boxes, configer, input_size):
        loc = bbox.cpu()
        if configer.get('phase') != 'debug':
            conf = F.softmax(conf.cpu(), dim=-1)

        default_boxes = default_boxes.unsqueeze(0).repeat(loc.size(0), 1, 1)

        variances = [0.1, 0.2]
        wh = torch.exp(loc[:, :, 2:] * variances[1]) * default_boxes[:, :, 2:]
        cxcy = loc[:, :, :2] * variances[
            0] * default_boxes[:, :, 2:] + default_boxes[:, :, :2]
        boxes = torch.cat([cxcy - wh / 2, cxcy + wh / 2], 2)  # [b, 8732,4]

        batch_size, num_priors, _ = boxes.size()
        boxes = boxes.unsqueeze(2).repeat(1, 1,
                                          configer.get('data', 'num_classes'),
                                          1)
        boxes = boxes.contiguous().view(boxes.size(0), -1, 4)

        # clip bounding box
        boxes[:, :, 0::2] = boxes[:, :, 0::2].clamp(min=0,
                                                    max=input_size[0] - 1)
        boxes[:, :, 1::2] = boxes[:, :, 1::2].clamp(min=0,
                                                    max=input_size[1] - 1)

        labels = torch.Tensor([
            i for i in range(configer.get('data', 'num_classes'))
        ]).to(boxes.device)
        labels = labels.view(1, 1, -1,
                             1).repeat(batch_size, num_priors, 1,
                                       1).contiguous().view(batch_size, -1, 1)
        max_conf = conf.contiguous().view(batch_size, -1, 1)

        # max_conf, labels = conf.max(2, keepdim=True)  # [b, 8732,1]
        predictions = torch.cat((boxes, max_conf.float(), labels.float()), 2)
        output = [None for _ in range(len(predictions))]
        for image_i, image_pred in enumerate(predictions):
            ids = labels[image_i].squeeze(1).nonzero().contiguous().view(-1, )
            if ids.numel() == 0:
                continue

            valid_preds = image_pred[ids]
            valid_preds = valid_preds[
                valid_preds[:, 4] > configer.get('vis', 'conf_threshold')]
            if valid_preds.numel() == 0:
                continue

            keep = DetHelper.cls_nms(
                valid_preds[:, :4],
                scores=valid_preds[:, 4],
                labels=valid_preds[:, 5],
                nms_threshold=configer.get('nms', 'max_threshold'),
                iou_mode=configer.get('nms', 'mode'),
                cls_keep_num=configer.get('vis', 'cls_keep_num'))

            valid_preds = valid_preds[keep]
            _, order = valid_preds[:, 4].sort(0, descending=True)
            order = order[:configer.get('vis', 'max_per_image')]
            output[image_i] = valid_preds[order]

        return output

    def __get_info_tree(self, detections, image_raw, input_size):
        height, width, _ = image_raw.shape
        in_width, in_height = input_size
        json_dict = dict()
        object_list = list()
        if detections is not None:
            for x1, y1, x2, y2, conf, cls_pred in detections:
                object_dict = dict()
                xmin = x1.cpu().item() / in_width * width
                ymin = y1.cpu().item() / in_height * height
                xmax = x2.cpu().item() / in_width * width
                ymax = y2.cpu().item() / in_height * height
                object_dict['bbox'] = [xmin, ymin, xmax, ymax]
                object_dict['label'] = int(cls_pred.cpu().item()) - 1
                object_dict['score'] = float('%.2f' % conf.cpu().item())

                object_list.append(object_dict)

        json_dict['objects'] = object_list

        return json_dict

    def test(self):
        base_dir = os.path.join(self.configer.get('project_dir'),
                                'val/results/det',
                                self.configer.get('dataset'))

        test_img = self.configer.get('test_img')
        test_dir = self.configer.get('test_dir')
        if test_img is None and test_dir is None:
            Log.error('test_img & test_dir not exists.')
            exit(1)

        if test_img is not None and test_dir is not None:
            Log.error('Either test_img or test_dir.')
            exit(1)

        if test_img is not None:
            base_dir = os.path.join(base_dir, 'test_img')
            filename = test_img.rstrip().split('/')[-1]
            json_path = os.path.join(
                base_dir, 'json',
                '{}.json'.format('.'.join(filename.split('.')[:-1])))
            raw_path = os.path.join(base_dir, 'raw', filename)
            vis_path = os.path.join(
                base_dir, 'vis',
                '{}_vis.png'.format('.'.join(filename.split('.')[:-1])))
            FileHelper.make_dirs(json_path, is_file=True)
            FileHelper.make_dirs(raw_path, is_file=True)
            FileHelper.make_dirs(vis_path, is_file=True)

            self.__test_img(test_img, json_path, raw_path, vis_path)

        else:
            base_dir = os.path.join(base_dir, 'test_dir',
                                    test_dir.rstrip('/').split('/')[-1])
            FileHelper.make_dirs(base_dir)

            for filename in FileHelper.list_dir(test_dir):
                image_path = os.path.join(test_dir, filename)
                json_path = os.path.join(
                    base_dir, 'json',
                    '{}.json'.format('.'.join(filename.split('.')[:-1])))
                raw_path = os.path.join(base_dir, 'raw', filename)
                vis_path = os.path.join(
                    base_dir, 'vis',
                    '{}_vis.png'.format('.'.join(filename.split('.')[:-1])))
                FileHelper.make_dirs(json_path, is_file=True)
                FileHelper.make_dirs(raw_path, is_file=True)
                FileHelper.make_dirs(vis_path, is_file=True)

                self.__test_img(image_path, json_path, raw_path, vis_path)

    def debug(self):
        base_dir = os.path.join(self.configer.get('project_dir'),
                                'vis/results/det',
                                self.configer.get('dataset'), 'debug')

        if not os.path.exists(base_dir):
            os.makedirs(base_dir)

        count = 0
        for i, data_dict in enumerate(self.det_data_loader.get_trainloader()):
            inputs = data_dict['img']
            batch_gt_bboxes = data_dict['bboxes']
            batch_gt_labels = data_dict['labels']
            input_size = [inputs.size(3), inputs.size(2)]
            feat_list = list()
            for stride in self.configer.get('network', 'stride_list'):
                feat_list.append(
                    torch.zeros((inputs.size(0), 1, input_size[1] // stride,
                                 input_size[0] // stride)))

            bboxes, labels = self.ssd_target_generator(feat_list,
                                                       batch_gt_bboxes,
                                                       batch_gt_labels,
                                                       input_size)
            eye_matrix = torch.eye(self.configer.get('data', 'num_classes'))
            labels_target = eye_matrix[labels.view(-1)].view(
                inputs.size(0), -1, self.configer.get('data', 'num_classes'))
            batch_detections = self.decode(
                bboxes, labels_target,
                self.ssd_priorbox_layer(feat_list, input_size), self.configer,
                input_size)
            for j in range(inputs.size(0)):
                count = count + 1
                if count > 20:
                    exit(1)

                ori_img_bgr = self.blob_helper.tensor2bgr(inputs[j])

                self.det_visualizer.vis_default_bboxes(
                    ori_img_bgr,
                    self.ssd_priorbox_layer(feat_list, input_size), labels[j])
                json_dict = self.__get_info_tree(batch_detections[j],
                                                 ori_img_bgr, input_size)
                image_canvas = self.det_parser.draw_bboxes(
                    ori_img_bgr.copy(),
                    json_dict,
                    conf_threshold=self.configer.get('vis', 'conf_threshold'))

                cv2.imwrite(
                    os.path.join(base_dir, '{}_{}_vis.png'.format(i, j)),
                    image_canvas)
                cv2.imshow('main', image_canvas)
                cv2.waitKey()
Example #10
0
class SingleShotDetector(object):
    """
      The class for Single Shot Detector. Include train, val, test & predict.
    """
    def __init__(self, configer):
        self.configer = configer
        self.batch_time = AverageMeter()
        self.data_time = AverageMeter()
        self.train_losses = AverageMeter()
        self.val_losses = AverageMeter()
        self.det_visualizer = DetVisualizer(configer)
        self.det_loss_manager = DetLossManager(configer)
        self.det_model_manager = DetModelManager(configer)
        self.det_data_loader = DetDataLoader(configer)
        self.ssd_target_generator = SSDTargetGenerator(configer)
        self.ssd_priorbox_layer = SSDPriorBoxLayer(configer)
        self.det_running_score = DetRunningScore(configer)
        self.module_utilizer = ModuleUtilizer(configer)
        self.optim_scheduler = OptimScheduler(configer)
        self.data_transformer = DataTransformer(configer)

        self.det_net = None
        self.train_loader = None
        self.val_loader = None
        self.optimizer = None
        self.scheduler = None

        self._init_model()

    def _init_model(self):
        self.det_net = self.det_model_manager.object_detector()
        self.det_net = self.module_utilizer.load_net(self.det_net)

        self.optimizer, self.scheduler = self.optim_scheduler.init_optimizer(
            self._get_parameters())

        self.train_loader = self.det_data_loader.get_trainloader()
        self.val_loader = self.det_data_loader.get_valloader()

        self.det_loss = self.det_loss_manager.get_det_loss('ssd_multibox_loss')

    def _get_parameters(self):

        return self.det_net.parameters()

    def warm_lr(self, batch_len):
        """Sets the learning rate
        # Adapted from PyTorch Imagenet example:
        # https://github.com/pytorch/examples/blob/master/imagenet/main.py
        """
        warm_iters = self.configer.get('lr', 'warm')['warm_epoch'] * batch_len
        warm_lr = self.configer.get('lr', 'warm')['warm_lr']
        if self.configer.get('iters') < warm_iters:
            lr_delta = (self.configer.get('lr', 'base_lr') -
                        warm_lr) * self.configer.get('iters') / warm_iters
            lr = warm_lr + lr_delta

            for param_group in self.optimizer.param_groups:
                param_group['lr'] = lr

    def __train(self):
        """
          Train function of every epoch during train phase.
        """
        self.det_net.train()
        start_time = time.time()
        # Adjust the learning rate after every epoch.
        self.configer.plus_one('epoch')
        self.scheduler.step(self.configer.get('epoch'))

        # data_tuple: (inputs, heatmap, maskmap, vecmap)
        for i, data_dict in enumerate(self.train_loader):
            if not self.configer.is_empty(
                    'lr', 'is_warm') and self.configer.get('lr', 'is_warm'):
                self.warm_lr(len(self.train_loader))

            inputs = data_dict['img']
            batch_gt_bboxes = data_dict['bboxes']
            batch_gt_labels = data_dict['labels']
            # Change the data type.
            inputs = self.module_utilizer.to_device(inputs)

            self.data_time.update(time.time() - start_time)
            # Forward pass.
            feat_list, loc, cls = self.det_net(inputs)

            bboxes, labels = self.ssd_target_generator(
                feat_list, batch_gt_bboxes, batch_gt_labels,
                [inputs.size(3), inputs.size(2)])

            bboxes, labels = self.module_utilizer.to_device(bboxes, labels)
            # Compute the loss of the train batch & backward.
            loss = self.det_loss(loc, bboxes, cls, labels)

            self.train_losses.update(loss.item(), inputs.size(0))

            self.optimizer.zero_grad()
            loss.backward()
            self.optimizer.step()

            # Update the vars of the train phase.
            self.batch_time.update(time.time() - start_time)
            start_time = time.time()
            self.configer.plus_one('iters')

            # Print the log info & reset the states.
            if self.configer.get('iters') % self.configer.get(
                    'solver', 'display_iter') == 0:
                Log.info(
                    'Train Epoch: {0}\tTrain Iteration: {1}\t'
                    'Time {batch_time.sum:.3f}s / {2}iters, ({batch_time.avg:.3f})\t'
                    'Data load {data_time.sum:.3f}s / {2}iters, ({data_time.avg:3f})\n'
                    'Learning rate = {3}\tLoss = {loss.val:.8f} (ave = {loss.avg:.8f})\n'
                    .format(self.configer.get('epoch'),
                            self.configer.get('iters'),
                            self.configer.get('solver', 'display_iter'),
                            self.scheduler.get_lr(),
                            batch_time=self.batch_time,
                            data_time=self.data_time,
                            loss=self.train_losses))
                self.batch_time.reset()
                self.data_time.reset()
                self.train_losses.reset()

            # Check to val the current model.
            if self.val_loader is not None and \
               (self.configer.get('iters')) % self.configer.get('solver', 'test_interval') == 0:
                self.__val()

    def __val(self):
        """
          Validation function during the train phase.
        """
        self.det_net.eval()
        start_time = time.time()
        with torch.no_grad():
            for j, data_dict in enumerate(self.val_loader):
                inputs = data_dict['img']
                batch_gt_bboxes = data_dict['bboxes']
                batch_gt_labels = data_dict['labels']
                inputs = self.module_utilizer.to_device(inputs)
                input_size = [inputs.size(3), inputs.size(2)]
                # Forward pass.
                feat_list, loc, cls = self.det_net(inputs)
                bboxes, labels = self.ssd_target_generator(
                    feat_list, batch_gt_bboxes, batch_gt_labels, input_size)

                bboxes, labels = self.module_utilizer.to_device(bboxes, labels)
                # Compute the loss of the val batch.
                loss = self.det_loss(loc, bboxes, cls, labels)
                self.val_losses.update(loss.item(), inputs.size(0))

                batch_detections = SingleShotDetectorTest.decode(
                    loc, cls, self.ssd_priorbox_layer(feat_list, input_size),
                    self.configer, input_size)
                batch_pred_bboxes = self.__get_object_list(batch_detections)
                # batch_pred_bboxes = self._get_gt_object_list(batch_gt_bboxes, batch_gt_labels)
                self.det_running_score.update(batch_pred_bboxes,
                                              batch_gt_bboxes, batch_gt_labels)

                # Update the vars of the val phase.
                self.batch_time.update(time.time() - start_time)
                start_time = time.time()

            self.module_utilizer.save_net(self.det_net, save_mode='iters')
            # Print the log info & reset the states.
            Log.info(
                'Test Time {batch_time.sum:.3f}s, ({batch_time.avg:.3f})\t'
                'Loss {loss.avg:.8f}\n'.format(batch_time=self.batch_time,
                                               loss=self.val_losses))
            Log.info('Val mAP: {}'.format(self.det_running_score.get_mAP()))
            self.det_running_score.reset()
            self.batch_time.reset()
            self.val_losses.reset()
            self.det_net.train()

    def _get_gt_object_list(self, batch_gt_bboxes, batch_gt_labels):
        batch_pred_bboxes = list()
        for i in range(len(batch_gt_bboxes)):
            object_list = list()
            if batch_gt_bboxes[i].numel() > 0:
                for j in range(batch_gt_bboxes[i].size(0)):
                    object_list.append([
                        batch_gt_bboxes[i][j][0].item(),
                        batch_gt_bboxes[i][j][1].item(),
                        batch_gt_bboxes[i][j][2].item(),
                        batch_gt_bboxes[i][j][3].item(),
                        batch_gt_labels[i][j].item(), 1.0
                    ])

            batch_pred_bboxes.append(object_list)
        return batch_pred_bboxes

    def __get_object_list(self, batch_detections):
        batch_pred_bboxes = list()
        for idx, detections in enumerate(batch_detections):
            object_list = list()
            if detections is not None:
                for x1, y1, x2, y2, conf, cls_pred in detections:
                    xmin = x1.cpu().item()
                    ymin = y1.cpu().item()
                    xmax = x2.cpu().item()
                    ymax = y2.cpu().item()
                    cf = conf.cpu().item()
                    cls_pred = cls_pred.cpu().item() - 1
                    object_list.append([
                        xmin, ymin, xmax, ymax,
                        int(cls_pred),
                        float('%.2f' % cf)
                    ])

            batch_pred_bboxes.append(object_list)

        return batch_pred_bboxes

    def train(self):
        cudnn.benchmark = True
        if self.configer.get('network',
                             'resume') is not None and self.configer.get(
                                 'network', 'resume_val'):
            self.__val()

        while self.configer.get('epoch') < self.configer.get(
                'solver', 'max_epoch'):
            self.__train()
            if self.configer.get('epoch') == self.configer.get(
                    'solver', 'max_epoch'):
                break
Example #11
0
class SingleShotDetector(object):
    """
      The class for Single Shot Detector. Include train, val, test & predict.
    """
    def __init__(self, configer):
        self.configer = configer
        self.batch_time = AverageMeter()
        self.data_time = AverageMeter()
        self.train_losses = AverageMeter()
        self.val_losses = AverageMeter()
        self.det_visualizer = DetVisualizer(configer)
        self.det_loss_manager = DetLossManager(configer)
        self.det_model_manager = DetModelManager(configer)
        self.det_data_loader = DetDataLoader(configer)
        self.module_utilizer = ModuleUtilizer(configer)
        self.optim_scheduler = OptimScheduler(configer)

        self.det_net = None
        self.train_loader = None
        self.val_loader = None
        self.optimizer = None
        self.scheduler = None

    def init_model(self):
        self.det_net = self.det_model_manager.object_detector()
        self.det_net = self.module_utilizer.load_net(self.det_net)

        self.optimizer, self.scheduler = self.optim_scheduler.init_optimizer(
            self._get_parameters())

        self.train_loader = self.det_data_loader.get_trainloader()
        self.val_loader = self.det_data_loader.get_valloader()

        self.det_loss = self.det_loss_manager.get_det_loss('multibox_loss')

    def _get_parameters(self):

        return self.det_net.parameters()

    def __train(self):
        """
          Train function of every epoch during train phase.
        """
        if self.configer.get(
                'network',
                'resume') is not None and self.configer.get('iters') == 0:
            self.__val()

        self.det_net.train()
        start_time = time.time()
        # Adjust the learning rate after every epoch.
        self.configer.plus_one('epoch')
        self.scheduler.step(self.configer.get('epoch'))

        # data_tuple: (inputs, heatmap, maskmap, vecmap)
        for i, (inputs, bboxes, labels) in enumerate(self.train_loader):
            self.data_time.update(time.time() - start_time)
            # Change the data type.
            inputs, bboxes, labels = self.module_utilizer.to_device(
                inputs, bboxes, labels)

            # Forward pass.
            loc, cls = self.det_net(inputs)

            # Compute the loss of the train batch & backward.
            loss = self.det_loss(loc, bboxes, cls, labels)

            self.train_losses.update(loss.item(), inputs.size(0))

            self.optimizer.zero_grad()
            loss.backward()
            self.optimizer.step()

            # Update the vars of the train phase.
            self.batch_time.update(time.time() - start_time)
            start_time = time.time()
            self.configer.plus_one('iters')

            # Print the log info & reset the states.
            if self.configer.get('iters') % self.configer.get(
                    'solver', 'display_iter') == 0:
                Log.info(
                    'Train Epoch: {0}\tTrain Iteration: {1}\t'
                    'Time {batch_time.sum:.3f}s / {2}iters, ({batch_time.avg:.3f})\t'
                    'Data load {data_time.sum:.3f}s / {2}iters, ({data_time.avg:3f})\n'
                    'Learning rate = {3}\tLoss = {loss.val:.8f} (ave = {loss.avg:.8f})\n'
                    .format(self.configer.get('epoch'),
                            self.configer.get('iters'),
                            self.configer.get('solver', 'display_iter'),
                            self.scheduler.get_lr(),
                            batch_time=self.batch_time,
                            data_time=self.data_time,
                            loss=self.train_losses))
                self.batch_time.reset()
                self.data_time.reset()
                self.train_losses.reset()

            # Check to val the current model.
            if self.val_loader is not None and \
               (self.configer.get('iters')) % self.configer.get('solver', 'test_interval') == 0:
                self.__val()

    def __val(self):
        """
          Validation function during the train phase.
        """
        self.det_net.eval()
        start_time = time.time()
        with torch.no_grad():
            for j, (inputs, bboxes, labels) in enumerate(self.val_loader):
                # Change the data type.
                inputs, bboxes, labels = self.module_utilizer.to_device(
                    inputs, bboxes, labels)

                # Forward pass.
                loc, cls = self.det_net(inputs)
                # Compute the loss of the val batch.
                loss = self.det_loss(loc, bboxes, cls, labels)

                self.val_losses.update(loss.item(), inputs.size(0))

                # Update the vars of the val phase.
                self.batch_time.update(time.time() - start_time)
                start_time = time.time()

            self.module_utilizer.save_net(self.det_net, metric='iters')
            # Print the log info & reset the states.
            Log.info(
                'Test Time {batch_time.sum:.3f}s, ({batch_time.avg:.3f})\t'
                'Loss {loss.avg:.8f}\n'.format(batch_time=self.batch_time,
                                               loss=self.val_losses))
            self.batch_time.reset()
            self.val_losses.reset()
            self.det_net.train()

    def train(self):
        cudnn.benchmark = True
        while self.configer.get('epoch') < self.configer.get(
                'solver', 'max_epoch'):
            self.__train()
            if self.configer.get('epoch') == self.configer.get(
                    'solver', 'max_epoch'):
                break
class SingleShotDetectorTest(object):
    def __init__(self, configer):
        self.configer = configer

        self.det_visualizer = DetVisualizer(configer)
        self.det_model_manager = DetModelManager(configer)
        self.det_data_loader = DetDataLoader(configer)
        self.module_utilizer = ModuleUtilizer(configer)
        self.default_boxes = PriorBoxLayer(configer)()
        self.device = torch.device('cpu' if self.configer.get('gpu') is None else 'cuda')
        self.det_net = None

    def init_model(self):
        self.det_net = self.det_model_manager.object_detector()
        self.det_net = self.module_utilizer.load_net(self.det_net)
        self.det_net.eval()

    def __test_img(self, image_path, save_path):
        Log.info('Image Path: {}'.format(image_path))
        image_raw = ImageHelper.cv2_open_bgr(image_path)
        inputs = ImageHelper.bgr2rgb(image_raw)
        inputs = ImageHelper.resize(inputs, tuple(self.configer.get('data', 'input_size')), Image.CUBIC)
        inputs = ToTensor()(inputs)
        inputs = Normalize(mean=self.configer.get('trans_params', 'mean'),
                           std=self.configer.get('trans_params', 'std'))(inputs)

        with torch.no_grad():
            inputs = inputs.unsqueeze(0).to(self.device)
            bbox, cls = self.det_net(inputs)

        bbox = bbox.cpu().data.squeeze(0)
        cls = F.softmax(cls.cpu().squeeze(0), dim=-1).data
        boxes, lbls, scores, has_obj = self.__decode(bbox, cls)
        if has_obj:
            boxes = boxes.cpu().numpy()
            boxes = np.clip(boxes, 0, 1)
            lbls = lbls.cpu().numpy()
            scores = scores.cpu().numpy()

            img_canvas = self.__draw_box(image_raw, boxes, lbls, scores)

        else:
            # print('None obj detected!')
            img_canvas = image_raw

        Log.info('Save Path: {}'.format(save_path))
        cv2.imwrite(save_path, img_canvas)
        # Boxes is within 0-1.
        self.__save_json(save_path, boxes, lbls, scores, image_raw)

        return image_raw, lbls, scores, boxes, has_obj

    def __draw_box(self, img_raw, box_list, label_list, conf):
        img_canvas = img_raw.copy()
        img_shape = img_canvas.shape

        for bbox, label, cf in zip(box_list, label_list, conf):
            if cf < self.configer.get('vis', 'conf_threshold'):
                continue

            xmin = int(bbox[0] * img_shape[1])
            xmax = int(bbox[2] * img_shape[1])
            ymin = int(bbox[1] * img_shape[0])
            ymax = int(bbox[3] * img_shape[0])

            class_name = self.configer.get('details', 'name_seq')[label - 1] + str(cf)
            c = self.configer.get('details', 'color_list')[label - 1]
            cv2.rectangle(img_canvas, (xmin, ymin), (xmax, ymax), color=c, thickness=3)
            font = cv2.FONT_HERSHEY_SIMPLEX
            cv2.putText(img_canvas, class_name, (xmin + 5, ymax - 5), font, fontScale=0.5, color=c, thickness=2)

        return img_canvas

    def __nms(self, bboxes, scores, mode='union'):
        """Non maximum suppression.

        Args:
          bboxes(tensor): bounding boxes, sized [N,4].
          scores(tensor): bbox scores, sized [N,].
          threshold(float): overlap threshold.
          mode(str): 'union' or 'min'.

        Returns:
          keep(tensor): selected indices.

        Ref:
          https://github.com/rbgirshick/py-faster-rcnn/blob/master/lib/nms/py_cpu_nms.py
        """

        x1 = bboxes[:, 0]
        y1 = bboxes[:, 1]
        x2 = bboxes[:, 2]
        y2 = bboxes[:, 3]

        areas = (x2 - x1) * (y2 - y1)
        _, order = scores.sort(0, descending=True)

        keep = []
        while order.numel() > 0:
            i = order[0]
            keep.append(i)

            if order.numel() == 1:
                break

            xx1 = x1[order[1:]].clamp(min=x1[i])
            yy1 = y1[order[1:]].clamp(min=y1[i])
            xx2 = x2[order[1:]].clamp(max=x2[i])
            yy2 = y2[order[1:]].clamp(max=y2[i])

            w = (xx2-xx1).clamp(min=0)
            h = (yy2-yy1).clamp(min=0)
            inter = w*h

            if self.configer.get('nms', 'mode') == 'union':
                ovr = inter / (areas[i] + areas[order[1:]] - inter)
            elif self.configer.get('nms', 'mode') == 'min':
                ovr = inter / areas[order[1:]].clamp(max=areas[i])
            else:
                raise TypeError('Unknown nms mode: %s.' % mode)

            ids = (ovr <= self.configer.get('nms', 'overlap_threshold')).nonzero().squeeze()
            if ids.numel() == 0:
                break

            order = order[ids + 1]

        return torch.LongTensor(keep)

    def __decode(self, loc, conf):
        """Transform predicted loc/conf back to real bbox locations and class labels.

        Args:
          loc: (tensor) predicted loc, sized [8732, 4].
          conf: (tensor) predicted conf, sized [8732, 21].

        Returns:
          boxes: (tensor) bbox locations, sized [#obj, 4].
          labels: (tensor) class labels, sized [#obj,1].

        """
        has_obj = False
        variances = [0.1, 0.2]
        wh = torch.exp(loc[:, 2:] * variances[1]) * self.default_boxes[:, 2:]
        cxcy = loc[:, :2] * variances[0] * self.default_boxes[:, 2:] + self.default_boxes[:, :2]
        boxes = torch.cat([cxcy - wh / 2, cxcy + wh / 2], 1)  # [8732,4]

        max_conf, labels = conf.max(1)  # [8732,1]
        ids = labels.nonzero()
        tmp = ids.cpu().numpy()

        if tmp.__len__() > 0:
            # print('detected %d objs' % tmp.__len__())
            ids = ids.squeeze(1)  # [#boxes,]
            has_obj = True
        else:
            print('None obj detected!')
            return 0, 0, 0, has_obj

        keep = self.__nms(boxes[ids], max_conf[ids])
        return boxes[ids][keep], labels[ids][keep], max_conf[ids][keep], has_obj

    def __save_json(self, save_path, box_list, label_list, conf, image_raw):
        file_name = '{}.json'.format(save_path[:-4], ".json")
        json_file_stream = open(file_name, 'w')

        size = image_raw.shape
        json_dict = dict()
        object_list = list()
        for bbox, label, cf in zip(box_list, label_list, conf):
            if cf < self.configer.get('vis', 'conf_threshold'):
                continue

            object_dict = dict()
            xmin = bbox[0] * size[1]
            xmax = bbox[2] * size[1]
            ymin = bbox[1] * size[0]
            ymax = bbox[3] * size[0]
            object_dict['bbox'] = [xmin, xmax, ymin, ymax]
            object_dict['label'] = label - 1

            object_list.append(object_dict)

        json_dict['objects'] = object_list

        json_file_stream.write(json.dumps(json_dict))
        json_file_stream.close()

    def test(self):
        base_dir = os.path.join(self.configer.get('project_dir'),
                                'val/results/det', self.configer.get('dataset'))

        test_img = self.configer.get('test_img')
        test_dir = self.configer.get('test_dir')
        if test_img is None and test_dir is None:
            Log.error('test_img & test_dir not exists.')
            exit(1)

        if test_img is not None and test_dir is not None:
            Log.error('Either test_img or test_dir.')
            exit(1)

        if test_img is not None:
            base_dir = os.path.join(base_dir, 'test_img')
            if not os.path.exists(base_dir):
                os.makedirs(base_dir)

            filename = test_img.rstrip().split('/')[-1]
            save_path = os.path.join(base_dir, filename)
            self.__test_img(test_img, save_path)

        else:
            base_dir = os.path.join(base_dir, 'test_dir', test_dir.rstrip('/').split('/')[-1])
            if not os.path.exists(base_dir):
                os.makedirs(base_dir)

            for filename in self.__list_dir(test_dir):
                image_path = os.path.join(test_dir, filename)
                save_path = os.path.join(base_dir, filename)
                if not os.path.exists(os.path.dirname(save_path)):
                    os.makedirs(os.path.dirname(save_path))

                self.__test_img(image_path, save_path)

    def debug(self):
        base_dir = os.path.join(self.configer.get('project_dir'),
                                'vis/results/det', self.configer.get('dataset'), 'debug')

        if not os.path.exists(base_dir):
            os.makedirs(base_dir)

        val_data_loader = self.det_data_loader.get_valloader(SSDDataLoader)

        count = 0
        for i, (inputs, bboxes, labels) in enumerate(val_data_loader):
            for j in range(inputs.size(0)):
                count = count + 1
                if count > 20:
                    exit(1)

                ori_img = DeNormalize(mean=self.configer.get('trans_params', 'mean'),
                                      std=self.configer.get('trans_params', 'std'))(inputs[j])
                ori_img = ori_img.numpy().transpose(1, 2, 0)
                image_bgr = cv2.cvtColor(ori_img, cv2.COLOR_RGB2BGR)
                eye_matrix = torch.eye(self.configer.get('data', 'num_classes'))
                labels_target = eye_matrix[labels.view(-1)].view(inputs.size(0), -1,
                                                                 self.configer.get('data', 'num_classes'))
                boxes, lbls, scores, has_obj = self.__decode(bboxes[j], labels_target[j])
                if has_obj:
                    boxes = boxes.cpu().numpy()
                    boxes = np.clip(boxes, 0, 1)
                    lbls = lbls.cpu().numpy()
                    scores = scores.cpu().numpy()

                    img_canvas = self.__draw_box(image_bgr, boxes, lbls, scores)

                else:
                    # print('None obj detected!')
                    img_canvas = image_bgr

                # self.det_visualizer.vis_bboxes(paf_avg, image_rgb.astype(np.uint8),  name='314{}_{}'.format(i,j))
                cv2.imwrite(os.path.join(base_dir, '{}_{}_result.jpg'.format(i, j)), img_canvas)

    def __list_dir(self, dir_name):
        filename_list = list()
        for item in os.listdir(dir_name):
            if os.path.isdir(os.path.join(dir_name, item)):
                for filename in os.listdir(os.path.join(dir_name, item)):
                    filename_list.append('{}/{}'.format(item, filename))

            else:
                filename_list.append(item)

        return filename_list
Example #13
0
class SingleShotDetectorTest(object):
    def __init__(self, configer):
        self.configer = configer

        self.det_visualizer = DetVisualizer(configer)
        self.det_parser = DetParser(configer)
        self.det_model_manager = DetModelManager(configer)
        self.det_data_loader = DetDataLoader(configer)
        self.module_utilizer = ModuleUtilizer(configer)
        self.default_boxes = PriorBoxLayer(configer)()
        self.device = torch.device('cpu' if self.configer.get('gpu') is None else 'cuda')
        self.det_net = None

    def init_model(self):
        self.det_net = self.det_model_manager.object_detector()
        self.det_net = self.module_utilizer.load_net(self.det_net)
        self.det_net.eval()

    def __test_img(self, image_path, json_path, raw_path, vis_path):
        Log.info('Image Path: {}'.format(image_path))
        ori_img_rgb = ImageHelper.img2np(ImageHelper.pil_open_rgb(image_path))
        ori_img_bgr = ImageHelper.rgb2bgr(ori_img_rgb)
        inputs = ImageHelper.resize(ori_img_rgb, tuple(self.configer.get('data', 'input_size')), Image.CUBIC)
        inputs = ToTensor()(inputs)
        inputs = Normalize(mean=self.configer.get('trans_params', 'mean'),
                           std=self.configer.get('trans_params', 'std'))(inputs)

        with torch.no_grad():
            inputs = inputs.unsqueeze(0).to(self.device)
            bbox, cls = self.det_net(inputs)

        bbox = bbox.cpu().data.squeeze(0)
        cls = F.softmax(cls.cpu().squeeze(0), dim=-1).data
        boxes, lbls, scores = self.__decode(bbox, cls)
        json_dict = self.__get_info_tree(boxes, lbls, scores, ori_img_rgb)

        image_canvas = self.det_parser.draw_bboxes(ori_img_bgr.copy(),
                                                   json_dict,
                                                   conf_threshold=self.configer.get('vis', 'conf_threshold'))
        cv2.imwrite(vis_path, image_canvas)
        cv2.imwrite(raw_path, ori_img_bgr)

        Log.info('Json Path: {}'.format(json_path))
        JsonHelper.save_file(json_dict, json_path)
        return json_dict

    def __nms(self, bboxes, scores, mode='union'):
        """Non maximum suppression.

        Args:
          bboxes(tensor): bounding boxes, sized [N,4].
          scores(tensor): bbox scores, sized [N,].
          threshold(float): overlap threshold.
          mode(str): 'union' or 'min'.

        Returns:
          keep(tensor): selected indices.

        Ref:
          https://github.com/rbgirshick/py-faster-rcnn/blob/master/lib/nms/py_cpu_nms.py
        """

        x1 = bboxes[:, 0]
        y1 = bboxes[:, 1]
        x2 = bboxes[:, 2]
        y2 = bboxes[:, 3]

        areas = (x2 - x1) * (y2 - y1)
        _, order = scores.sort(0, descending=True)

        keep = []
        while order.numel() > 0:
            i = order[0]
            keep.append(i)

            if order.numel() == 1:
                break

            xx1 = x1[order[1:]].clamp(min=x1[i])
            yy1 = y1[order[1:]].clamp(min=y1[i])
            xx2 = x2[order[1:]].clamp(max=x2[i])
            yy2 = y2[order[1:]].clamp(max=y2[i])

            w = (xx2-xx1).clamp(min=0)
            h = (yy2-yy1).clamp(min=0)
            inter = w*h

            if self.configer.get('nms', 'mode') == 'union':
                ovr = inter / (areas[i] + areas[order[1:]] - inter)
            elif self.configer.get('nms', 'mode') == 'min':
                ovr = inter / areas[order[1:]].clamp(max=areas[i])
            else:
                raise TypeError('Unknown nms mode: %s.' % mode)

            ids = (ovr <= self.configer.get('nms', 'overlap_threshold')).nonzero().squeeze()
            if ids.numel() == 0:
                break

            order = order[ids + 1]

        return torch.LongTensor(keep)

    def __decode(self, loc, conf):
        """Transform predicted loc/conf back to real bbox locations and class labels.

        Args:
          loc: (tensor) predicted loc, sized [8732, 4].
          conf: (tensor) predicted conf, sized [8732, 21].

        Returns:
          boxes: (tensor) bbox locations, sized [#obj, 4].
          labels: (tensor) class labels, sized [#obj,1].

        """
        variances = [0.1, 0.2]
        wh = torch.exp(loc[:, 2:] * variances[1]) * self.default_boxes[:, 2:]
        cxcy = loc[:, :2] * variances[0] * self.default_boxes[:, 2:] + self.default_boxes[:, :2]
        boxes = torch.cat([cxcy - wh / 2, cxcy + wh / 2], 1)  # [8732,4]

        max_conf, labels = conf.max(1)  # [8732,1]
        ids = labels.nonzero()
        tmp = ids.cpu().numpy()

        if tmp.__len__() > 0:
            # print('detected %d objs' % tmp.__len__())
            ids = ids.squeeze(1)  # [#boxes,]
            keep = self.__nms(boxes[ids], max_conf[ids])

            pred_bboxes = boxes[ids][keep].cpu().numpy()
            pred_bboxes = np.clip(pred_bboxes, 0, 1)
            pred_labels = labels[ids][keep].cpu().numpy()
            pred_confs = max_conf[ids][keep].cpu().numpy()

            return pred_bboxes, pred_labels, pred_confs

        else:
            Log.info('None object detected!')
            pred_bboxes = list()
            pred_labels = list()
            pred_confs = list()
            return pred_bboxes, pred_labels, pred_confs

    def __get_info_tree(self, box_list, label_list, conf, image_raw):
        height, width, _ = image_raw.shape
        json_dict = dict()
        object_list = list()
        for bbox, label, cf in zip(box_list, label_list, conf):
            if cf < self.configer.get('vis', 'conf_threshold'):
                continue

            object_dict = dict()
            xmin = bbox[0] * width
            xmax = bbox[2] * width
            ymin = bbox[1] * height
            ymax = bbox[3] * height
            object_dict['bbox'] = [xmin, ymin, xmax, ymax]
            object_dict['label'] = label - 1
            object_dict['score'] = cf

            object_list.append(object_dict)

        json_dict['objects'] = object_list
        return json_dict

    def test(self):
        base_dir = os.path.join(self.configer.get('project_dir'),
                                'val/results/det', self.configer.get('dataset'))

        test_img = self.configer.get('test_img')
        test_dir = self.configer.get('test_dir')
        if test_img is None and test_dir is None:
            Log.error('test_img & test_dir not exists.')
            exit(1)

        if test_img is not None and test_dir is not None:
            Log.error('Either test_img or test_dir.')
            exit(1)

        if test_img is not None:
            base_dir = os.path.join(base_dir, 'test_img')
            filename = test_img.rstrip().split('/')[-1]
            json_path = os.path.join(base_dir, 'json', '{}.json'.format('.'.join(filename.split('.')[:-1])))
            raw_path = os.path.join(base_dir, 'raw', filename)
            vis_path = os.path.join(base_dir, 'vis', '{}_vis.png'.format('.'.join(filename.split('.')[:-1])))
            if not os.path.exists(os.path.dirname(json_path)):
                os.makedirs(os.path.dirname(json_path))

            if not os.path.exists(os.path.dirname(raw_path)):
                os.makedirs(os.path.dirname(raw_path))

            if not os.path.exists(os.path.dirname(vis_path)):
                os.makedirs(os.path.dirname(vis_path))

            self.__test_img(test_img, json_path, raw_path, vis_path)

        else:
            base_dir = os.path.join(base_dir, 'test_dir', test_dir.rstrip('/').split('/')[-1])
            if not os.path.exists(base_dir):
                os.makedirs(base_dir)

            for filename in FileHelper.list_dir(test_dir):
                image_path = os.path.join(test_dir, filename)
                json_path = os.path.join(base_dir, 'json', '{}.json'.format('.'.join(filename.split('.')[:-1])))
                raw_path = os.path.join(base_dir, 'raw', filename)
                vis_path = os.path.join(base_dir, 'vis', '{}_vis.png'.format('.'.join(filename.split('.')[:-1])))
                if not os.path.exists(os.path.dirname(json_path)):
                    os.makedirs(os.path.dirname(json_path))

                if not os.path.exists(os.path.dirname(raw_path)):
                    os.makedirs(os.path.dirname(raw_path))

                if not os.path.exists(os.path.dirname(vis_path)):
                    os.makedirs(os.path.dirname(vis_path))

                self.__test_img(image_path, json_path, raw_path, vis_path)

    def debug(self):
        base_dir = os.path.join(self.configer.get('project_dir'),
                                'vis/results/det', self.configer.get('dataset'), 'debug')

        if not os.path.exists(base_dir):
            os.makedirs(base_dir)

        val_data_loader = self.det_data_loader.get_valloader()

        count = 0
        for i, (inputs, bboxes, labels) in enumerate(val_data_loader):
            for j in range(inputs.size(0)):
                count = count + 1
                if count > 20:
                    exit(1)

                ori_img_rgb = DeNormalize(mean=self.configer.get('trans_params', 'mean'),
                                          std=self.configer.get('trans_params', 'std'))(inputs[j])
                ori_img_rgb = ori_img_rgb.numpy().transpose(1, 2, 0).astype(np.uint8)
                ori_img_bgr = cv2.cvtColor(ori_img_rgb, cv2.COLOR_RGB2BGR)
                eye_matrix = torch.eye(self.configer.get('data', 'num_classes'))
                labels_target = eye_matrix[labels.view(-1)].view(inputs.size(0), -1,
                                                                 self.configer.get('data', 'num_classes'))
                boxes, lbls, scores = self.__decode(bboxes[j], labels_target[j])
                json_dict = self.__get_info_tree(boxes, lbls, scores, ori_img_rgb)
                image_canvas = self.det_parser.draw_bboxes(ori_img_bgr.copy(),
                                                           json_dict,
                                                           conf_threshold=self.configer.get('vis', 'conf_threshold'))

                cv2.imwrite(os.path.join(base_dir, '{}_{}_vis.png'.format(i, j)), image_canvas)
                cv2.imshow('main', image_canvas)
                cv2.waitKey()
Example #14
0
class YOLOv3Test(object):
    def __init__(self, configer):
        self.configer = configer
        self.blob_helper = BlobHelper(configer)
        self.det_visualizer = DetVisualizer(configer)
        self.det_parser = DetParser(configer)
        self.det_model_manager = DetModelManager(configer)
        self.det_data_loader = DetDataLoader(configer)
        self.yolo_target_generator = YOLOTargetGenerator(configer)
        self.module_utilizer = ModuleUtilizer(configer)
        self.data_transformer = DataTransformer(configer)
        self.yolo_detection_layer = YOLODetectionLayer(configer)
        self.device = torch.device(
            'cpu' if self.configer.get('gpu') is None else 'cuda')
        self.det_net = None

        self._init_model()

    def _init_model(self):
        self.det_net = self.det_model_manager.object_detector()
        self.det_net = self.module_utilizer.load_net(self.det_net)
        self.det_net.eval()

    def __test_img(self, image_path, json_path, raw_path, vis_path):
        Log.info('Image Path: {}'.format(image_path))
        img = ImageHelper.read_image(
            image_path,
            tool=self.configer.get('data', 'image_tool'),
            mode=self.configer.get('data', 'input_mode'))
        ori_img_bgr = ImageHelper.get_cv2_bgr(img,
                                              mode=self.configer.get(
                                                  'data', 'input_mode'))

        inputs = self.blob_helper.make_input(img,
                                             input_size=self.configer.get(
                                                 'data', 'input_size'),
                                             scale=1.0)

        with torch.no_grad():
            inputs = inputs.unsqueeze(0).to(self.device)
            _, _, detections = self.det_net(inputs)

        batch_detections = self.decode(detections, self.configer)
        json_dict = self.__get_info_tree(batch_detections[0], ori_img_bgr)

        image_canvas = self.det_parser.draw_bboxes(
            ori_img_bgr.copy(),
            json_dict,
            conf_threshold=self.configer.get('vis', 'conf_threshold'))
        ImageHelper.save(ori_img_bgr, raw_path)
        ImageHelper.save(image_canvas, vis_path)

        Log.info('Json Path: {}'.format(json_path))
        JsonHelper.save_file(json_dict, json_path)
        return json_dict

    @staticmethod
    def decode(batch_pred_bboxes, configer):
        box_corner = batch_pred_bboxes.new(batch_pred_bboxes.shape)
        box_corner[:, :,
                   0] = batch_pred_bboxes[:, :,
                                          0] - batch_pred_bboxes[:, :, 2] / 2
        box_corner[:, :,
                   1] = batch_pred_bboxes[:, :,
                                          1] - batch_pred_bboxes[:, :, 3] / 2
        box_corner[:, :,
                   2] = batch_pred_bboxes[:, :,
                                          0] + batch_pred_bboxes[:, :, 2] / 2
        box_corner[:, :,
                   3] = batch_pred_bboxes[:, :,
                                          1] + batch_pred_bboxes[:, :, 3] / 2

        # clip bounding box
        box_corner[:, :, 0::2] = box_corner[:, :, 0::2].clamp(min=0, max=1.0)
        box_corner[:, :, 1::2] = box_corner[:, :, 1::2].clamp(min=0, max=1.0)

        batch_pred_bboxes[:, :, :4] = box_corner[:, :, :4]

        output = [None for _ in range(len(batch_pred_bboxes))]
        for image_i, image_pred in enumerate(batch_pred_bboxes):
            # Filter out confidence scores below threshold
            conf_mask = (image_pred[:, 4] > configer.get(
                'vis', 'obj_threshold')).squeeze()
            image_pred = image_pred[conf_mask]
            # If none are remaining => process next image
            if image_pred.numel() == 0:
                continue

            # Get score and class with highest confidence
            class_conf, class_pred = torch.max(
                image_pred[:, 5:5 + configer.get('data', 'num_classes')],
                1,
                keepdim=True)
            # Detections ordered as (x1, y1, x2, y2, obj_conf, class_conf, class_pred)
            detections = torch.cat(
                (image_pred[:, :5], class_conf.float(), class_pred.float()), 1)
            keep_index = DetHelper.cls_nms(
                image_pred[:, :4],
                scores=image_pred[:, 4],
                labels=class_pred.squeeze(1),
                nms_threshold=configer.get('nms', 'max_threshold'),
                iou_mode=configer.get('nms', 'mode'),
                nms_mode='cython_nms')

            output[image_i] = detections[keep_index]

        return output

    def __get_info_tree(self, detections, image_raw):
        height, width, _ = image_raw.shape
        json_dict = dict()
        object_list = list()
        if detections is not None:
            for x1, y1, x2, y2, conf, cls_conf, cls_pred in detections:
                object_dict = dict()
                xmin = x1.cpu().item() * width
                ymin = y1.cpu().item() * height
                xmax = x2.cpu().item() * width
                ymax = y2.cpu().item() * height
                object_dict['bbox'] = [xmin, ymin, xmax, ymax]
                object_dict['label'] = int(cls_pred.cpu().item())
                object_dict['score'] = float('%.2f' % conf.cpu().item())

                object_list.append(object_dict)

        json_dict['objects'] = object_list

        return json_dict

    def test(self):
        base_dir = os.path.join(self.configer.get('project_dir'),
                                'val/results/det',
                                self.configer.get('dataset'))

        test_img = self.configer.get('test_img')
        test_dir = self.configer.get('test_dir')
        if test_img is None and test_dir is None:
            Log.error('test_img & test_dir not exists.')
            exit(1)

        if test_img is not None and test_dir is not None:
            Log.error('Either test_img or test_dir.')
            exit(1)

        if test_img is not None:
            base_dir = os.path.join(base_dir, 'test_img')
            filename = test_img.rstrip().split('/')[-1]
            json_path = os.path.join(
                base_dir, 'json',
                '{}.json'.format('.'.join(filename.split('.')[:-1])))
            raw_path = os.path.join(base_dir, 'raw', filename)
            vis_path = os.path.join(
                base_dir, 'vis',
                '{}_vis.png'.format('.'.join(filename.split('.')[:-1])))
            FileHelper.make_dirs(json_path, is_file=True)
            FileHelper.make_dirs(raw_path, is_file=True)
            FileHelper.make_dirs(vis_path, is_file=True)

            self.__test_img(test_img, json_path, raw_path, vis_path)

        else:
            base_dir = os.path.join(base_dir, 'test_dir',
                                    test_dir.rstrip('/').split('/')[-1])
            if not os.path.exists(base_dir):
                os.makedirs(base_dir)

            for filename in FileHelper.list_dir(test_dir):
                image_path = os.path.join(test_dir, filename)
                json_path = os.path.join(
                    base_dir, 'json',
                    '{}.json'.format('.'.join(filename.split('.')[:-1])))
                raw_path = os.path.join(base_dir, 'raw', filename)
                vis_path = os.path.join(
                    base_dir, 'vis',
                    '{}_vis.png'.format('.'.join(filename.split('.')[:-1])))
                FileHelper.make_dirs(json_path, is_file=True)
                FileHelper.make_dirs(raw_path, is_file=True)
                FileHelper.make_dirs(vis_path, is_file=True)

                self.__test_img(image_path, json_path, raw_path, vis_path)

    def debug(self):
        base_dir = os.path.join(self.configer.get('project_dir'),
                                'vis/results/det',
                                self.configer.get('dataset'), 'debug')

        if not os.path.exists(base_dir):
            os.makedirs(base_dir)

        count = 0
        for i, data_dict in enumerate(self.det_data_loader.get_trainloader()):
            inputs = data_dict['img']
            batch_gt_bboxes = data_dict['bboxes']
            batch_gt_labels = data_dict['labels']
            input_size = [inputs.size(3), inputs.size(2)]
            feat_list = list()
            for stride in self.configer.get('network', 'stride_list'):
                feat_list.append(
                    torch.zeros((inputs.size(0), 1, input_size[1] // stride,
                                 input_size[0] // stride)))

            targets, _, _ = self.yolo_target_generator(feat_list,
                                                       batch_gt_bboxes,
                                                       batch_gt_labels,
                                                       input_size)
            targets = targets.to(self.device)
            anchors_list = self.configer.get('gt', 'anchors_list')
            output_list = list()
            be_c = 0
            for f_index, anchors in enumerate(anchors_list):
                feat_stride = self.configer.get('network',
                                                'stride_list')[f_index]
                fm_size = [
                    int(round(border / feat_stride)) for border in input_size
                ]
                num_c = len(anchors) * fm_size[0] * fm_size[1]
                output_list.append(
                    targets[:, be_c:be_c + num_c].contiguous().view(
                        targets.size(0), len(anchors), fm_size[1], fm_size[0],
                        -1).permute(0, 1, 4, 2, 3).contiguous().view(
                            targets.size(0), -1, fm_size[1], fm_size[0]))

                be_c += num_c

            batch_detections = self.decode(
                self.yolo_detection_layer(output_list)[2], self.configer)

            for j in range(inputs.size(0)):
                count = count + 1
                if count > 20:
                    exit(1)

                ori_img_bgr = self.blob_helper.tensor2bgr(inputs[j])

                json_dict = self.__get_info_tree(batch_detections[j],
                                                 ori_img_bgr)

                image_canvas = self.det_parser.draw_bboxes(
                    ori_img_bgr.copy(),
                    json_dict,
                    conf_threshold=self.configer.get('vis', 'obj_threshold'))

                cv2.imwrite(
                    os.path.join(base_dir, '{}_{}_vis.png'.format(i, j)),
                    image_canvas)
                cv2.imshow('main', image_canvas)
                cv2.waitKey()