def __init__(self, root_dir=cfg.LFW_ROOT, train=True, start=None, max_samples=None, deterministic=True, use_cache=True): from utils.face_extractor import FaceExtractor self.face_extractor = FaceExtractor() self.use_cache = use_cache self.root_dir = root_dir self.cropped_img_dir = os.path.join(root_dir, 'crops_tight') self.fullsize_img_dir = os.path.join(root_dir, 'images') self.feature_dir = os.path.join(root_dir, 'features') import glob ann = [] person_dirs = sorted(glob.glob(os.path.join(cfg.LFW_ROOT, 'images', '*'))) for id, person_dir in enumerate(person_dirs): name = os.path.split(person_dir)[1] for img_file in sorted(glob.glob(os.path.join(person_dir, '*.jpg'))): # create fnames of format 'Aaron_Eckhart/Aaron_Eckhart_0001' fname = os.path.join(name, os.path.splitext(os.path.split(img_file)[1])[0]) ann.append({'fname': fname, 'id': id, 'name': name}) self.annotations = pd.DataFrame(ann) # limit number of samples st,nd = 0, None if start is not None: st = start if max_samples is not None: nd = st+max_samples self.annotations = self.annotations[st:nd] self.transform = ds_utils.build_transform(deterministic=True, color=True)
def __init__(self, root_dir=cfg.AFLW_ROOT, train=True, color=True, start=None, max_samples=None, deterministic=None, use_cache=True, daug=0, return_modified_images=False, test_split='full', align_face_orientation=True, return_landmark_heatmaps=False, landmark_sigma=9, landmark_ids=range(19), **kwargs): assert test_split in ['full', 'frontal'] from utils.face_extractor import FaceExtractor self.face_extractor = FaceExtractor() self.use_cache = use_cache self.align_face_orientation = align_face_orientation self.return_landmark_heatmaps = return_landmark_heatmaps self.return_modified_images = return_modified_images self.landmark_sigma = landmark_sigma self.landmark_ids = landmark_ids self.mode = TRAIN if train else VAL self.root_dir = root_dir root_dir_local = cfg.AFLW_ROOT_LOCAL self.fullsize_img_dir = os.path.join(root_dir, 'data/flickr') self.cropped_img_dir = os.path.join(root_dir_local, 'crops') self.feature_dir = os.path.join(root_dir_local, 'features') self.color = color annotation_filename = os.path.join(cfg.AFLW_ROOT_LOCAL, 'alfw.pkl') self.annotations_original = pd.read_pickle(annotation_filename) print("Number of images: {}".format(len(self.annotations_original))) self.frontal_only = test_split == 'frontal' self.make_split(train, self.frontal_only) # limit number of samples st,nd = 0, None if start is not None: st = start if max_samples is not None: nd = st+max_samples self.annotations = self.annotations[st:nd] if deterministic is None: deterministic = self.mode != TRAIN self.transform = ds_utils.build_transform(deterministic, True, daug) transforms = [fp.CenterCrop(cfg.INPUT_SIZE)] transforms += [fp.ToTensor() ] transforms += [fp.Normalize([0.518, 0.418, 0.361], [1, 1, 1])] # VGGFace(2) self.crop_to_tensor = tf.Compose(transforms) print("Number of images: {}".format(len(self)))
def __init__(self, root_dir=cfg.LFW_ROOT, train=True, start=None, max_samples=None, deterministic=True, use_cache=True, view=2): assert(view in [1,2]) from utils.face_extractor import FaceExtractor self.face_extractor = FaceExtractor() self.mode = TRAIN if train else VAL self.use_cache = use_cache self.root_dir = root_dir self.cropped_img_dir = os.path.join(root_dir, 'crops_tight') self.fullsize_img_dir = os.path.join(root_dir, 'images') self.feature_dir = os.path.join(root_dir, 'features') self.default_bbox = [65, 80, 65+100, 80+100] pairs_file = 'pairsDevTest.txt' if view == 1 else 'pairs.txt' path_annotations = os.path.join(self.root_dir, pairs_file) # self.annotations = pd.read_csv(path_annotations) self.pairs = [] with open(path_annotations) as txt_file: # num_pairs = int(txt_file.readline()) * 2 # print(num_pairs) for line in txt_file: items = line.split() if len(items) == 3: pair = (items[0], int(items[1]), items[0], int(items[2])) elif len(items) == 4: pair = (items[0], int(items[1]), items[2], int(items[3])) else: # print("Invalid line: {}".format(line)) continue self.pairs.append(pair) # assert(num_pairs == len(self.pairs)) from sklearn.utils import shuffle self.pairs = shuffle(self.pairs, random_state=0) # limit number of samples st,nd = 0, None if start is not None: st = start if max_samples is not None: nd = st+max_samples self.pairs = self.pairs[st:nd] self.transform = ds_utils.build_transform(deterministic, color=True)
def __init__(self, root_dir, fullsize_img_dir, root_dir_local=None, train=True, color=True, start=None, max_samples=None, deterministic=None, use_cache=True, detect_face=False, align_face_orientation=True, return_modified_images=False, return_landmark_heatmaps=True, landmark_sigma=9, landmark_ids=range(68), daug=0, **kwargs): from utils.face_extractor import FaceExtractor self.face_extractor = FaceExtractor() self.train = train self.mode = TRAIN if train else VAL self.use_cache = use_cache self.detect_face = detect_face self.align_face_orientation = align_face_orientation self.start = start self.max_samples = max_samples self.daug = daug self.return_modified_images = return_modified_images self.return_landmark_heatmaps = return_landmark_heatmaps self.landmark_sigma = landmark_sigma self.landmark_ids = landmark_ids self.deterministic = deterministic if self.deterministic is None: self.deterministic = self.mode != TRAIN self.fullsize_img_dir = fullsize_img_dir self.root_dir = root_dir self.root_dir_local = root_dir_local if root_dir_local is not None else self.root_dir self.cropped_img_dir = os.path.join(self.root_dir_local, 'crops') self.feature_dir = os.path.join(self.root_dir_local, 'features') self.color = color self.transform = ds_utils.build_transform(self.deterministic, self.color, daug) print("Loading annotations... ") self.annotations = self.create_annotations() print(" Number of images: {}".format(len(self.annotations))) self.init() self.select_samples() transforms = [fp.CenterCrop(cfg.INPUT_SIZE)] transforms += [fp.ToTensor() ] transforms += [fp.Normalize([0.518, 0.418, 0.361], [1, 1, 1])] # VGGFace(2) self.crop_to_tensor = tf.Compose(transforms)
def __init__(self, root_dir=cfg.VGGFACE2_ROOT, train=True, color=True, start=None, max_samples=None, deterministic=None, min_conf=cfg.MIN_OPENFACE_CONFIDENCE, use_cache=True, crop_source='bb_ground_truth', detect_face=False, align_face_orientation=True, return_landmark_heatmaps=False, return_modified_images=False, daug=0, landmark_sigma=None, landmark_ids=None, **kwargs): assert(crop_source in ['bb_ground_truth', 'lm_ground_truth', 'lm_cnn', 'lm_openface']) self.mode = TRAIN if train else VAL self.face_extractor = FaceExtractor() self.use_cache = use_cache self.detect_face = detect_face self.align_face_orientation = align_face_orientation self.color = color self.crop_source = crop_source self.return_landmark_heatmaps = return_landmark_heatmaps self.return_modified_images = return_modified_images self.landmark_sigma = landmark_sigma self.landmark_ids = landmark_ids self.root_dir = root_dir root_dir_local = cfg.VGGFACE2_ROOT_LOCAL split_subfolder = 'train' if train else 'test' crop_folder = 'crops' if cfg.INPUT_SIZE == 128: crop_folder += '_128' self.cropped_img_dir = os.path.join(root_dir_local, split_subfolder, crop_folder, crop_source) self.fullsize_img_dir = os.path.join(root_dir, split_subfolder, 'imgs') self.feature_dir = os.path.join(root_dir_local, split_subfolder, 'features') annotation_filename = 'loose_bb_{}.csv'.format(split_subfolder) # annotation_filename = 'loose_landmark_{}.csv'.format(split_subfolder) # self.path_annotations_mod = os.path.join(root_dir_local, annotation_filename + '.mod_full_of.pkl') self.path_annotations_mod = os.path.join(root_dir_local, annotation_filename + '.mod_full.pkl') if os.path.isfile(self.path_annotations_mod): print('Reading pickle file...') self.annotations = pd.read_pickle(self.path_annotations_mod) print('done.') else: print('Reading CSV file...') self.annotations = pd.read_csv(os.path.join(self.root_dir, 'bb_landmark', annotation_filename)) print('done.') of_confs, poses, landmarks = [], [], [] self.annotations = self.annotations[0:4000000] self.annotations = self.annotations[self.annotations.H > 80] print("Number of images: {}".format(len(self))) def get_face_height(lms): return lms[8,1] - lms[27,1] read_openface_landmarks = True if read_openface_landmarks: for cnt, filename in enumerate(self.annotations.NAME_ID): filename_noext = os.path.splitext(filename)[0] bb = self.annotations.iloc[cnt][1:5].values expected_face_center = [bb[0] + bb[2] / 2.0, bb[1] + bb[3] / 2.0] conf, lms, pose, num_faces = ds_utils.read_openface_detection(os.path.join(self.feature_dir, filename_noext), expected_face_center=expected_face_center, use_cache=True, return_num_faces=True) if num_faces > 1: print("Deleting extracted crop for {}...".format(filename)) cache_filepath = os.path.join(self.cropped_img_dir, 'tight', filename + '.jpg') if os.path.isfile(cache_filepath): os.remove(cache_filepath) of_confs.append(conf) landmarks.append(lms) poses.append(pose) if (cnt+1) % 10000 == 0: log.info(cnt+1) self.annotations['pose'] = poses self.annotations['of_conf'] = of_confs self.annotations['landmarks_of'] = landmarks # assign new continuous ids to persons (0, range(n)) print("Creating id labels...") _ids = self.annotations.NAME_ID _ids = _ids.map(lambda x: int(x.split('/')[0][1:])) self.annotations['ID'] = _ids self.annotations.to_pickle(self.path_annotations_mod) min_face_height = 100 print('Removing faces with height <={:.2f}px...'.format(min_face_height)) self.annotations = self.annotations[self.annotations.H > min_face_height] print("Number of images: {}".format(len(self))) # limit number of samples st,nd = 0, None if start is not None: st = start if max_samples is not None: nd = st+max_samples self.annotations = self.annotations[st:nd] if deterministic is None: deterministic = self.mode != TRAIN self.transform = ds_utils.build_transform(deterministic, self.color, daug) print("Number of images: {}".format(len(self))) print("Number of identities: {}".format(self.annotations.ID.nunique()))
def __init__(self, root_dir=cfg.AFFECTNET_ROOT, train=True, transform=None, crop_type='tight', color=True, start=None, max_samples=None, outlier_threshold=None, deterministic=None, use_cache=True, detect_face=False, align_face_orientation=False, min_conf=cfg.MIN_OPENFACE_CONFIDENCE, daug=0, return_landmark_heatmaps=False, landmark_sigma=9, landmark_ids=range(68), return_modified_images=False, crop_source='lm_openface', **kwargs): assert (crop_type in ['fullsize', 'tight', 'loose']) assert (crop_source in [ 'bb_ground_truth', 'lm_ground_truth', 'lm_cnn', 'lm_openface' ]) self.face_extractor = FaceExtractor() self.mode = TRAIN if train else VAL self.crop_source = crop_source self.use_cache = use_cache self.detect_face = detect_face self.align_face_orientation = align_face_orientation self.return_landmark_heatmaps = return_landmark_heatmaps self.return_modified_images = return_modified_images self.landmark_sigma = landmark_sigma self.landmark_ids = landmark_ids self.start = start self.max_samples = max_samples self.root_dir = root_dir self.crop_type = crop_type self.color = color self.outlier_threshold = outlier_threshold self.transform = transform self.fullsize_img_dir = os.path.join(self.root_dir, 'cropped_Annotated') self.cropped_img_dir = os.path.join(self.root_dir, 'crops', crop_source) self.feature_dir = os.path.join(self.root_dir, 'features') annotation_filename = 'training' if train else 'validation' path_annotations_mod = os.path.join(root_dir, annotation_filename + '.mod.pkl') if os.path.isfile(path_annotations_mod): print('Reading pickle file...') self._annotations = pd.read_pickle(path_annotations_mod) else: print('Reading CSV file...') self._annotations = pd.read_csv( os.path.join(root_dir, annotation_filename + '.csv')) print('done.') # drop non-faces self._annotations = self._annotations[ self._annotations.expression < 8] # Samples in annotation file are somewhat clustered by expression. # Shuffle to create a more even distribution. # NOTE: deterministic, always creates the same order if train: from sklearn.utils import shuffle self._annotations = shuffle(self._annotations, random_state=2) # remove samples with inconsistent expression<->valence/arousal values self._remove_outliers() poses = [] confs = [] landmarks = [] for cnt, filename in enumerate( self._annotations.subDirectory_filePath): if cnt % 1000 == 0: print(cnt) filename_noext = os.path.splitext(filename)[0] conf, lms, pose = ds_utils.read_openface_detection( os.path.join(self.feature_dir, filename_noext)) poses.append(pose) confs.append(conf) landmarks.append(lms) self._annotations['pose'] = poses self._annotations['conf'] = confs self._annotations['landmarks_of'] = landmarks # self.annotations.to_csv(path_annotations_mod, index=False) self._annotations.to_pickle(path_annotations_mod) poses = np.abs(np.stack(self._annotations.pose.values)) only_good_image_for_training = True if train and only_good_image_for_training: print(len(self._annotations)) min_rot_deg = 30 max_rot_deg = 90 # print('Limiting rotation to +-[{}-{}] degrees...'.format(min_rot_deg, max_rot_deg)) # self._annotations = self._annotations[(poses[:, 0] < np.deg2rad(max_rot_deg)) & # (poses[:, 1] < np.deg2rad(max_rot_deg)) & # (poses[:, 2] < np.deg2rad(max_rot_deg))] # self._annotations = self._annotations[(np.deg2rad(min_rot_deg) < poses[:, 0]) | # (np.deg2rad(min_rot_deg) < poses[:, 1])] # self._annotations = self._annotations[np.deg2rad(min_rot_deg) < poses[:, 1] ] print(len(self._annotations)) # print('Removing OpenFace confs <={:.2f}...'.format(min_conf)) # self._annotations = self._annotations[self._annotations.conf > cfg.MIN_OPENFACE_CONFIDENCE] # print(len(self._annotations)) # select by Valence/Arousal # min_arousal = 0.0 # print('Removing arousal <={:.2f}...'.format(min_arousal)) # self._annotations = self._annotations[self._annotations.arousal > min_arousal] # print(len(self._annotations)) # There is (at least) one missing image in the dataset. Remove by checking face width: self._annotations = self._annotations[self._annotations.face_width > 0] # self._annotations_balanced = self._annotations # self.filter_labels(label_dict_exclude={'expression': 0}) # self.filter_labels(label_dict_exclude={'expression': 1}) # self._annotations = self._annotations[self._annotations.arousal > 0.2] self.rebalance_classes() if deterministic is None: deterministic = self.mode != TRAIN self.transform = ds_utils.build_transform(deterministic, self.color, daug) transforms = [fp.CenterCrop(cfg.INPUT_SIZE)] transforms += [fp.ToTensor()] transforms += [fp.Normalize([0.518, 0.418, 0.361], [1, 1, 1])] # VGGFace(2) self.crop_to_tensor = tf.Compose(transforms)
def __init__(self, root_dir=cfg.VOXCELEB_ROOT, train=True, start=None, max_samples=None, deterministic=True, with_bumps=False, min_of_conf=0.3, min_face_height=100, use_cache=True, **kwargs): from utils.face_extractor import FaceExtractor self.face_extractor = FaceExtractor() self.use_cache = use_cache self.root_dir = root_dir self.cropped_img_dir = os.path.join(cfg.VOXCELEB_ROOT_LOCAL, 'crops') self.fullsize_img_dir = os.path.join( root_dir, 'frames/unzippedIntervalFaces/data') self.feature_dir = os.path.join(root_dir, 'features/unzippedIntervalFaces/data') self.npfeature_dir = os.path.join( cfg.VOXCELEB_ROOT_LOCAL, 'features/unzippedIntervalFaces/data') self.train = train self.with_bumps = with_bumps annotation_filename = 'dev' if train else 'test' path_annotations_mod = os.path.join(root_dir, annotation_filename + '.mod.pkl') if os.path.isfile(path_annotations_mod) and False: self.annotations = pd.read_pickle(path_annotations_mod) else: print('Reading CSV file...') self.annotations = pd.read_csv( os.path.join(root_dir, annotation_filename + '.csv')) print('done.') # self.annotations['of_conf'] = -1 # self.annotations['landmarks'] = '' # self.annotations['pose'] = '' # of_confs, poses, landmarks = [], [], [] # # # # # for cnt, filename in enumerate(self.annotations.fname): # for cnt, idx in enumerate(self.annotations.index): # filename = self.annotations.iloc[idx].fname # filename_noext = os.path.splitext(filename)[0] # of_conf, lms, pose = ds_utils.read_openface_detection(os.path.join(self.feature_dir, filename_noext)) # str_landmarks = encode_landmarks(lms) # of_confs.append(of_conf) # # poses.append(pose) # landmarks.append(lms) # self.annotations.loc[idx, 'of_conf'] = of_conf # self.annotations.loc[idx, 'landmarks'] = str_landmarks # self.annotations.loc[idx, 'pose'] = encode_landmarks(pose) # if (cnt+1) % 100 == 0: # print(cnt+1) # if (cnt+1) % 1000 == 0: # print('saving annotations...') # self.annotations.to_pickle(path_annotations_mod) # # self.annotations.to_csv(path_annotations_mod, index=False) # self.annotations.to_pickle(path_annotations_mod) path_annotations_mod = os.path.join(root_dir, annotation_filename + '.lms.pkl') lm_annots = pd.read_pickle(os.path.join(root_dir, path_annotations_mod)) t = time.time() self.annotations = pd.merge(self.annotations, lm_annots, on='fname', how='inner') print("Time merge: {:.2f}".format(time.time() - t)) t = time.time() self.annotations['vid'] = self.annotations.fname.map( lambda x: x.split('/')[2]) self.annotations['id'] = self.annotations.uid.map(lambda x: int(x[2:])) print("Time vid/id labels: {:.2f}".format(time.time() - t)) print("Num. faces: {}".format(len(self.annotations))) print("Num. ids : {}".format(self.annotations.id.nunique())) # drop bad face detections print("Removing faces with conf < {}".format(min_of_conf)) self.annotations = self.annotations[ self.annotations.of_conf >= min_of_conf] print("Num. faces: {}".format(len(self.annotations))) # drop small faces print("Removing faces with height < {}px".format(min_face_height)) self.annotations = self.annotations[ self.annotations.face_height >= min_face_height] print("Num. faces: {}".format(len(self.annotations))) fr = 0 prev_vid = -1 frame_nums = [] for n, id in enumerate(self.annotations.vid.values): fr += 1 if id != prev_vid: prev_vid = id fr = 0 frame_nums.append(fr) self.annotations['FRAME'] = frame_nums self.max_frames_per_video = 200 self.frame_interval = 3 print('Limiting videos in VoxCeleb to {} frames...'.format( self.max_frames_per_video)) self.annotations = self.annotations[self.annotations.FRAME % self.frame_interval == 0] self.annotations = self.annotations[ self.annotations.FRAME < self.max_frames_per_video * self.frame_interval] print("Num. faces: {}".format(len(self.annotations))) # limit number of samples st, nd = 0, None if start is not None: st = start if max_samples is not None: nd = st + max_samples self.annotations = self.annotations[st:nd] self.transform = ds_utils.build_transform(deterministic=True, color=True)
def __init__(self, root_dir=cfg.CELEBA_ROOT, train=True, color=True, start=None, max_samples=None, deterministic=None, crop_type='tight', **kwargs): from utils.face_extractor import FaceExtractor self.face_extractor = FaceExtractor() self.mode = TRAIN if train else TEST self.crop_type = crop_type self.root_dir = root_dir root_dir_local = cfg.CELEBA_ROOT_LOCAL assert (crop_type in ['tight', 'loose', 'fullsize']) self.cropped_img_dir = os.path.join(root_dir_local, 'crops') self.fullsize_img_dir = os.path.join(root_dir, 'img_align_celeba') self.feature_dir = os.path.join(root_dir_local, 'features') self.color = color annotation_filename = 'list_landmarks_align_celeba.txt' path_annotations_mod = os.path.join(root_dir_local, annotation_filename + '.mod.pkl') if os.path.isfile(path_annotations_mod): self.annotations = pd.read_pickle(path_annotations_mod) else: print('Reading original TXT file...') self.annotations = pd.read_csv(os.path.join( self.root_dir, 'Anno', annotation_filename), delim_whitespace=True) print('done.') # store OpenFace features in annotation dataframe poses = [] confs = [] landmarks = [] for cnt, filename in enumerate(self.annotations.fname): if cnt % 1000 == 0: print(cnt) filename_noext = os.path.splitext(filename)[0] conf, lms, pose = ds_utils.read_openface_detection( os.path.join(self.feature_dir, filename_noext)) poses.append(pose) confs.append(conf) landmarks.append(lms) self.annotations['pose'] = poses self.annotations['conf'] = confs self.annotations['landmarks_of'] = landmarks # add identities to annotations self.identities = pd.read_csv(os.path.join(self.root_dir, 'Anno', 'identity_CelebA.txt'), delim_whitespace=True, header=None, names=['fname', 'id']) self.annotations = pd.merge(self.annotations, self.identities, on='fname', copy=False) # save annations as pickle file self.annotations.to_pickle(path_annotations_mod) # select training or test set (currently not using validation set) SPLIT = { TRAIN: (0, 162772), VAL: (162772, 182639), TEST: (182639, 202601) } self.annotations = self.annotations[ (self.annotations.index >= SPLIT[self.mode][0]) & (self.annotations.index < SPLIT[self.mode][1])] self.annotations = self.annotations.sort_values(by='id') print("Num. faces: {}".format(len(self.annotations))) if 'crops_celeba' in self.cropped_img_dir: min_of_conf = 0.0 else: min_of_conf = 0.5 print("Removing faces with conf < {}".format(min_of_conf)) self.annotations = self.annotations[ self.annotations.conf >= min_of_conf] print("Remaining num. faces: {}".format(len(self.annotations))) # max_rot_deg = 1 # print('Limiting rotation to +-{} degrees...'.format(max_rot_deg)) # poses = np.abs(np.stack(self.annotations.pose.values)) # self.annotations = self.annotations[(poses[:, 0] > np.deg2rad(max_rot_deg)) | # (poses[:, 1] > np.deg2rad(max_rot_deg)) | # (poses[:, 2] > np.deg2rad(max_rot_deg))] # print(len(self.annotations)) # limit number of samples st, nd = 0, None if start is not None: st = start if max_samples is not None: nd = st + max_samples self.annotations = self.annotations[st:nd] self._annotations = self.annotations[st:nd].copy() if deterministic is None: deterministic = self.mode != TRAIN self.transform = ds_utils.build_transform(deterministic, self.color)
def __init__(self, root_dir=cfg.W300_ROOT, train=True, transform=None, color=True, start=None, max_samples=None, deterministic=None, align_face_orientation=cfg.CROP_ALIGN_ROTATION, crop_type='tight', test_split='challenging', detect_face=False, use_cache=True, crop_source='bb_detector', daug=0, return_modified_images=False, return_landmark_heatmaps=False, landmark_sigma=3, landmark_ids=range(68), **kwargs): assert(crop_type in ['fullsize', 'tight','loose']) test_split = test_split.lower() assert(test_split in ['common', 'challenging', '300w', 'full']) assert(crop_source in W300.CROP_SOURCES) lmcfg.config_landmarks('300w') self.start = start self.max_samples = max_samples self.use_cache = use_cache self.crop_source = crop_source self.return_landmark_heatmaps = return_landmark_heatmaps self.return_modified_images = return_modified_images self.landmark_sigma = landmark_sigma self.landmark_ids = landmark_ids self.root_dir = root_dir self.local_root_dir = cfg.W300_ROOT_LOCAL self.color = color self.transform = transform self.fullsize_img_dir = os.path.join(self.root_dir, 'images') self.align_face_orientation = align_face_orientation self.detect_face = detect_face self.crop_type = crop_type self.cropped_img_dir = os.path.join(cfg.W300_ROOT_LOCAL, 'crops', crop_source) self.feature_dir_cnn = os.path.join(cfg.W300_ROOT_LOCAL, 'features_cnn') self.feature_dir_of = os.path.join(cfg.W300_ROOT_LOCAL, 'features_of') self.bounding_box_dir = os.path.join(cfg.W300_ROOT, 'Bounding Boxes') self.split = 'train' if train else test_split self.build_annotations(self.split) print("Num. images: {}".format(len(self))) # limit number of samples st,nd = 0, None if start is not None: st = start if max_samples is not None: nd = st+max_samples self.annotations = self.annotations[st:nd] if deterministic is None: deterministic = not train if self.crop_type == 'tight': self.transform = ds_utils.build_transform(deterministic, True, daug) elif self.crop_type == 'fullsize': self.transform = lambda x:x from utils.face_extractor import FaceExtractor self.face_extractor = FaceExtractor() transforms = [fp.CenterCrop(cfg.INPUT_SIZE)] transforms += [fp.ToTensor() ] transforms += [fp.Normalize([0.518, 0.418, 0.361], [1, 1, 1])] # VGGFace(2) self.crop_to_tensor = tf.Compose(transforms)
def __init__(self, root_dir=cfg.VGGFACE2_ROOT, train=True, color=True, start=None, max_samples=None, deterministic=None, min_conf=cfg.MIN_OPENFACE_CONFIDENCE, use_cache=True, crop_source='bb_ground_truth', detect_face=False, align_face_orientation=True, return_landmark_heatmaps=False, return_modified_images=False, daug=0, landmark_sigma=None, landmark_ids=None, **kwargs): assert (crop_source in [ 'bb_ground_truth', 'lm_ground_truth', 'lm_cnn', 'lm_openface' ]) self.mode = TRAIN if train else VAL self.face_extractor = FaceExtractor() self.use_cache = use_cache self.detect_face = detect_face self.align_face_orientation = align_face_orientation self.color = color self.crop_source = crop_source self.return_landmark_heatmaps = return_landmark_heatmaps self.return_modified_images = return_modified_images self.landmark_sigma = landmark_sigma self.landmark_ids = landmark_ids self.root_dir = root_dir root_dir_local = cfg.VGGFACE2_ROOT_LOCAL split_subfolder = 'train' if train else 'test' self.cropped_img_dir = os.path.join(root_dir_local, split_subfolder, 'crops', crop_source) self.fullsize_img_dir = os.path.join(root_dir, split_subfolder, 'imgs') self.feature_dir = os.path.join(root_dir_local, split_subfolder, 'features') annotation_filename = 'loose_bb_{}.csv'.format(split_subfolder) # annotation_filename = 'loose_landmark_{}.csv'.format(split_subfolder) # self.path_annotations_mod = os.path.join(root_dir_local, annotation_filename + '.mod_full_of.pkl') self.path_annotations_mod = os.path.join( root_dir_local, annotation_filename + '.mod_full.pkl') if os.path.isfile(self.path_annotations_mod): print('Reading pickle file...') self.annotations = pd.read_pickle(self.path_annotations_mod) print('done.') else: print('Reading CSV file...') self.annotations = pd.read_csv( os.path.join(self.root_dir, 'bb_landmark', annotation_filename)) print('done.') of_confs, poses, landmarks = [], [], [] self.annotations = self.annotations[0:4000000] self.annotations = self.annotations[self.annotations.H > 80] print("Number of images: {}".format(len(self))) def get_face_height(lms): return lms[8, 1] - lms[27, 1] read_openface_landmarks = True if read_openface_landmarks: for cnt, filename in enumerate(self.annotations.NAME_ID): filename_noext = os.path.splitext(filename)[0] bb = self.annotations.iloc[cnt][1:5].values expected_face_center = [ bb[0] + bb[2] / 2.0, bb[1] + bb[3] / 2.0 ] conf, lms, pose, num_faces = ds_utils.read_openface_detection( os.path.join(self.feature_dir, filename_noext), expected_face_center=expected_face_center, use_cache=True, return_num_faces=True) if num_faces > 1: print("Deleting extracted crop for {}...".format( filename)) cache_filepath = os.path.join(self.cropped_img_dir, 'tight', filename + '.jpg') if os.path.isfile(cache_filepath): os.remove(cache_filepath) # numpy_lmfile = os.path.join(self.feature_dir, filename) + '.npz' # if os.path.isfile(numpy_lmfile): # os.remove(numpy_lmfile) of_confs.append(conf) landmarks.append(lms) poses.append(pose) if (cnt + 1) % 10000 == 0: log.info(cnt + 1) # if (cnt+1) % 1000 == 0: # print('saving annotations...') # self.annotations.to_pickle(self.path_annotations_mod) self.annotations['pose'] = poses self.annotations['of_conf'] = of_confs self.annotations['landmarks_of'] = landmarks # self.annotations['face_height'] = self.annotations.landmarks_of.map(get_face_height) # assign new continuous ids to persons (0, range(n)) print("Creating id labels...") _ids = self.annotations.NAME_ID _ids = _ids.map(lambda x: int(x.split('/')[0][1:])) self.annotations['ID'] = _ids # unique_ids = _ids.unique() # uid2idx = dict(zip(unique_ids, range(1,len(unique_ids)+1))) # self.annotations['ID'] = _ids.map(uid2idx) self.annotations.to_pickle(self.path_annotations_mod) select_subset = False if select_subset: print("Number of images: {}".format(len(self))) self.annotations = self.annotations[ self.annotations.of_conf > min_conf] print("Number of images: {}".format(len(self))) min_rot_deg = 0 max_rot_deg = 90 print('Limiting rotation to +-[{}-{}] degrees...'.format( min_rot_deg, max_rot_deg)) poses = np.abs(np.stack(self.annotations.pose.values)) self.annotations = self.annotations[ (poses[:, 0] < np.deg2rad(max_rot_deg)) & (poses[:, 1] < np.deg2rad(max_rot_deg)) & (poses[:, 2] < np.deg2rad(max_rot_deg))] # self.annotations = self.annotations[(np.deg2rad(min_rot_deg) < poses[:, 0]) | # (np.deg2rad(min_rot_deg) < poses[:, 1])] min_face_height = 100 print( 'Removing faces with height <={:.2f}px...'.format(min_face_height)) self.annotations = self.annotations[ self.annotations.H > min_face_height] print("Number of images: {}".format(len(self))) # width = self.annotations.W # height = self.annotations.H # ratio = width / height # self.annotations = self.annotations[(ratio > 0.5) & (ratio < 0.60)] # self.annotations = self.annotations[ratio < 0.65] # self.annotations = self.annotations[ratio > 0.9] # FIXME: shuffle for find_similar_images # self.annotations = self.annotations[:1000000] # from sklearn.utils import shuffle # self.annotations = shuffle(self.annotations, random_state=2) #############3 # limit number of samples st, nd = 0, None if start is not None: st = start if max_samples is not None: nd = st + max_samples self.annotations = self.annotations[st:nd] if deterministic is None: deterministic = self.mode != TRAIN self.transform = ds_utils.build_transform(deterministic, self.color, daug) print("Number of images: {}".format(len(self))) print("Number of identities: {}".format(self.annotations.ID.nunique()))