def get_test_set(opt, spatial_transform, temporal_transform, target_transform): assert opt.dataset in ['jester', 'egogesture', 'nv', 'sc', 'ems'] assert opt.test_subset in ['val', 'test'] if opt.test_subset == 'val': subset = 'validation' else: subset = 'testing' if opt.dataset == 'ems': test_data = EMS(opt.video_path, opt.annotation_path, subset, opt.n_val_samples, spatial_transform, temporal_transform, target_transform, modality=opt.modality, sample_duration=opt.sample_duration) elif opt.dataset == 'sc': test_data = Jester(opt.video_path, opt.annotation_path, subset, opt.n_val_samples, spatial_transform, temporal_transform, target_transform, modality=opt.modality, sample_duration=opt.sample_duration) elif opt.dataset == 'jester': test_data = Jester(opt.video_path, opt.annotation_path, subset, opt.n_val_samples, spatial_transform, temporal_transform, target_transform, modality=opt.modality, sample_duration=opt.sample_duration) elif opt.dataset == 'egogesture': test_data = EgoGesture(opt.video_path, opt.annotation_path, subset, opt.n_val_samples, spatial_transform, temporal_transform, target_transform, modality=opt.modality, sample_duration=opt.sample_duration) elif opt.dataset == 'nv': test_data = NV(opt.video_path, opt.annotation_path, 'validation', spatial_transform=spatial_transform, temporal_transform=temporal_transform, target_transform=target_transform, sample_duration=opt.sample_duration, modality=opt.modality) return test_data
def get_validation_set(opt, spatial_transform, temporal_transform, target_transform): assert opt.dataset in ['jester', 'egogesture', 'nv'] if opt.dataset == 'jester': validation_data = Jester(opt.video_path, opt.annotation_path, 'validation', opt.n_val_samples, spatial_transform, temporal_transform, target_transform, modality=opt.modality, sample_duration=opt.sample_duration) elif opt.dataset == 'egogesture': validation_data = EgoGesture(opt.video_path, opt.annotation_path, 'validation', opt.n_val_samples, spatial_transform, temporal_transform, target_transform, modality=opt.modality, sample_duration=opt.sample_duration) elif opt.dataset == 'nv': validation_data = NV(opt.video_path, opt.annotation_path, 'validation', spatial_transform=spatial_transform, temporal_transform=temporal_transform, target_transform=target_transform, sample_duration=opt.sample_duration, modality=opt.modality) return validation_data
def get_test_set(opt, spatial_transform, temporal_transform, target_transform): assert opt.dataset in ['kinetics', 'jester', 'ucf101', 'nvgesture'] assert opt.test_subset in ['val', 'test'] if opt.test_subset == 'val': subset = 'validation' else: subset = 'testing' if opt.dataset == 'jester': test_data = Jester(opt.video_path, opt.annotation_path, subset, 0, spatial_transform, temporal_transform, target_transform, sample_duration=opt.sample_duration) elif opt.dataset == 'nvgesture': test_data = NV(opt.video_path, opt.annotation_path, subset, 0, spatial_transform, temporal_transform, target_transform, sample_duration=opt.sample_duration) else: raise ValueError("Given dataset not available") return test_data
def get_validation_set(opt, spatial_transform, temporal_transform, target_transform): assert opt.dataset in ['kinetics', 'jester', 'ucf101'] if opt.dataset == 'kinetics': validation_data = Kinetics(opt.video_path, opt.annotation_path, 'validation', opt.n_val_samples, spatial_transform, temporal_transform, target_transform, sample_duration=opt.sample_duration) elif opt.dataset == 'jester': validation_data = Jester(opt.video_path, opt.annotation_path, 'validation', opt.n_val_samples, spatial_transform, temporal_transform, target_transform, sample_duration=opt.sample_duration) elif opt.dataset == 'ucf101': validation_data = UCF101(opt.video_path, opt.annotation_path, 'validation', opt.n_val_samples, spatial_transform, temporal_transform, target_transform, sample_duration=opt.sample_duration) return validation_data
def get_training_set(opt, spatial_transform, temporal_transform, target_transform): assert opt.dataset in ['kinetics', 'jester', 'ucf101'] if opt.dataset == 'kinetics': training_data = Kinetics(opt.video_path, opt.annotation_path, 'training', spatial_transform=spatial_transform, temporal_transform=temporal_transform, target_transform=target_transform, sample_duration=opt.sample_duration) elif opt.dataset == 'jester': training_data = Jester(opt.video_path, opt.annotation_path, 'training', spatial_transform=spatial_transform, temporal_transform=temporal_transform, target_transform=target_transform, sample_duration=opt.sample_duration) elif opt.dataset == 'ucf101': training_data = UCF101(opt.video_path, opt.annotation_path, 'training', spatial_transform=spatial_transform, temporal_transform=temporal_transform, target_transform=target_transform, sample_duration=opt.sample_duration) return training_data
def get_validation_set(opt, spatial_transform, temporal_transform, target_transform): assert opt.dataset in ['KSL', 'jester', 'SLR', 'KETI'] if opt.dataset == 'KSL': validation_data = KSL(opt.video_path, opt.annotation_path, 'validation', opt.n_val_samples, spatial_transform, temporal_transform, target_transform, sample_duration=opt.sample_duration) elif opt.dataset == 'jester': validation_data = Jester(opt.video_path, opt.annotation_path, 'validation', opt.n_val_samples, spatial_transform, temporal_transform, target_transform, sample_duration=opt.sample_duration) elif opt.dataset == 'KETI': validation_data = KETI(opt.video_path, opt.annotation_path, 'validation', opt.n_val_samples, spatial_transform, temporal_transform, target_transform, sample_duration=opt.sample_duration) return validation_data
def get_test_set(opt, spatial_transform, temporal_transform, target_transform): assert opt.dataset in ['kinetics', 'activitynet', 'ucf101', 'hmdb51'] assert opt.test_subset in ['val', 'test'] if opt.test_subset == 'val': subset = 'val' elif opt.test_subset == 'test': subset = 'testing' if opt.dataset == 'kinetics': test_data = Kinetics(opt.video_path, opt.annotation_path, subset, 0, spatial_transform, temporal_transform, target_transform, sample_duration=opt.sample_duration) elif opt.dataset == 'activitynet': test_data = ActivityNet(opt.video_path, opt.annotation_path, subset, True, 0, spatial_transform, temporal_transform, target_transform, sample_duration=opt.sample_duration) elif opt.dataset == 'ucf101': test_data = UCF101(opt.video_path, opt.annotation_path, subset, 0, spatial_transform, temporal_transform, target_transform, sample_duration=opt.sample_duration) elif opt.dataset == 'hmdb51': test_data = HMDB51(opt.video_path, opt.annotation_path, subset, -1, spatial_transform, temporal_transform, target_transform, sample_duration=opt.sample_duration) elif opt.dataset == 'jester': test_data = Jester(opt.video_path, opt.annotation_path, subset, 0, spatial_transform, temporal_transform, target_transform, sample_duration=opt.sample_duration) return test_data
def get_validation_set(opt, spatial_transform, temporal_transform, target_transform): assert opt.dataset in ['kinetics', 'activitynet', 'ucf101', 'hmdb51', '20bn-jester'] if opt.dataset == 'kinetics': validation_data = Kinetics( opt.video_path, opt.annotation_path, 'validation', opt.n_val_samples, spatial_transform, temporal_transform, target_transform, sample_duration=opt.sample_duration) elif opt.dataset == 'activitynet': validation_data = ActivityNet( opt.video_path, opt.annotation_path, 'validation', False, opt.n_val_samples, spatial_transform, temporal_transform, target_transform, sample_duration=opt.sample_duration) elif opt.dataset == 'ucf101': validation_data = UCF101( opt.video_path, opt.annotation_path, 'validation', opt.n_val_samples, spatial_transform, temporal_transform, target_transform, sample_duration=opt.sample_duration) elif opt.dataset == 'hmdb51': validation_data = HMDB51( opt.video_path, opt.annotation_path, 'validation', opt.n_val_samples, spatial_transform, temporal_transform, target_transform, sample_duration=opt.sample_duration) elif opt.dataset == '20bn-jester': validation_data = Jester( opt.video_path, opt.annotation_path, 'validation', opt.n_val_samples, spatial_transform, temporal_transform, target_transform, sample_duration=opt.sample_duration) return validation_data
def get_training_set(opt, spatial_transform, temporal_transform, target_transform): assert opt.dataset in [ 'kinetics', 'jester', 'ucf101', 'egogesture', 'nvgesture' ] if opt.train_validate: subset = ['training', 'validation'] else: subset = 'training' if opt.dataset == 'kinetics': training_data = Kinetics(opt.video_path, opt.annotation_path, 'training', spatial_transform=spatial_transform, temporal_transform=temporal_transform, target_transform=target_transform, sample_duration=opt.sample_duration) elif opt.dataset == 'jester': training_data = Jester(opt.video_path, opt.annotation_path, 'training', spatial_transform=spatial_transform, temporal_transform=temporal_transform, target_transform=target_transform, sample_duration=opt.sample_duration) elif opt.dataset == 'ucf101': training_data = UCF101(opt.video_path, opt.annotation_path, 'training', spatial_transform=spatial_transform, temporal_transform=temporal_transform, target_transform=target_transform, sample_duration=opt.sample_duration) elif opt.dataset == 'egogesture': training_data = EgoGesture(opt.video_path, opt.annotation_path, subset, spatial_transform=spatial_transform, temporal_transform=temporal_transform, target_transform=target_transform, sample_duration=opt.sample_duration, modality=opt.modality) elif opt.dataset == 'nvgesture': training_data = NV(opt.video_path, opt.annotation_path, subset, spatial_transform=spatial_transform, temporal_transform=temporal_transform, target_transform=target_transform, sample_duration=opt.sample_duration, modality=opt.modality) return training_data
def get_training_set(opt, spatial_transform, temporal_transform, target_transform): assert opt.dataset in ['kinetics', 'activitynet', 'ucf101', 'hmdb51', '20bn-jester'] if opt.dataset == 'kinetics': training_data = Kinetics( opt.video_path, opt.annotation_path, 'training', spatial_transform=spatial_transform, temporal_transform=temporal_transform, target_transform=target_transform) elif opt.dataset == 'activitynet': training_data = ActivityNet( opt.video_path, opt.annotation_path, 'training', False, spatial_transform=spatial_transform, temporal_transform=temporal_transform, target_transform=target_transform) elif opt.dataset == 'ucf101': training_data = UCF101( opt.video_path, opt.annotation_path, 'training', spatial_transform=spatial_transform, temporal_transform=temporal_transform, target_transform=target_transform) elif opt.dataset == 'hmdb51': training_data = HMDB51( opt.video_path, opt.annotation_path, 'training', spatial_transform=spatial_transform, temporal_transform=temporal_transform, target_transform=target_transform) elif opt.dataset == '20bn-jester': training_data = Jester( opt.video_path, opt.annotation_path, 'training', spatial_transform=spatial_transform, temporal_transform=temporal_transform, target_transform=target_transform) return training_data
def get_validation_set(opt, spatial_transform, temporal_transform, target_transform): assert opt.dataset in ['kinetics', 'jester', 'ucf101', 'nvgesture'] if opt.dataset == 'jester': validation_data = Jester(opt.video_path, opt.annotation_path, 'validation', opt.n_val_samples, spatial_transform, temporal_transform, target_transform, sample_duration=opt.sample_duration) else: raise ValueError("Given dataset not available") return validation_data
def get_test_set(opt, spatial_transform, temporal_transform, target_transform): assert opt.dataset in ['kinetics', 'jester', 'ucf101', 'dad'] assert opt.test_subset in ['val', 'test'] if opt.test_subset == 'val': subset = 'validation' elif opt.test_subset == 'test': subset = 'testing' if opt.dataset == 'kinetics': test_data = Kinetics(opt.video_path, opt.annotation_path, subset, 0, spatial_transform, temporal_transform, target_transform, sample_duration=opt.sample_duration) elif opt.dataset == 'jester': test_data = Jester(opt.video_path, opt.annotation_path, subset, 0, spatial_transform, temporal_transform, target_transform, sample_duration=opt.sample_duration) elif opt.dataset == 'dad': test_data = Dad(opt.video_path, opt.annotation_path, subset, 0, spatial_transform, temporal_transform, target_transform, sample_duration=opt.sample_duration) elif opt.dataset == 'ucf101': test_data = UCF101(opt.video_path, opt.annotation_path, subset, 0, spatial_transform, temporal_transform, target_transform, sample_duration=opt.sample_duration) return test_data
def get_training_set(opt, spatial_transform, temporal_transform, target_transform): assert opt.dataset in ['KSL', 'jester', 'SLR', 'KETI'] if opt.dataset == 'KSL': training_data = KSL(opt.video_path, opt.annotation_path, 'training', spatial_transform=spatial_transform, temporal_transform=temporal_transform, target_transform=target_transform, sample_duration=opt.sample_duration) elif opt.dataset == 'jester': training_data = Jester(opt.video_path, opt.annotation_path, 'training', spatial_transform=spatial_transform, temporal_transform=temporal_transform, target_transform=target_transform, sample_duration=opt.sample_duration) elif opt.dataset == 'SLR': training_data = SLR(opt.video_path, opt.annotation_path, 'training', spatial_transform=spatial_transform, temporal_transform=temporal_transform, target_transform=target_transform, sample_duration=opt.sample_duration) elif opt.dataset == 'KETI': training_data = KETI(opt.video_path, opt.annotation_path, 'training', spatial_transform=spatial_transform, temporal_transform=temporal_transform, target_transform=target_transform, sample_duration=opt.sample_duration) return training_data
def get_validation_set(opt, spatial_transform, temporal_transform, target_transform): assert opt.dataset in ['jester', 'SHGD'] if opt.dataset == 'jester': validation_data = Jester(opt.video_path, opt.annotation_path, opt.val_list, opt.modality, spatial_transform, temporal_transform, target_transform, sample_duration=opt.sample_duration) else: validation_data = SHGD(opt.video_path, opt.annotation_path, opt.val_list, opt.modality, spatial_transform, temporal_transform, target_transform, sample_duration=opt.sample_duration) return validation_data
def get_training_set(opt, spatial_transform, temporal_transform, target_transform): assert opt.dataset in ['kinetics', 'jester', 'ucf101', 'nvgesture'] if opt.dataset == 'jester': training_data = Jester(opt.video_path, opt.annotation_path, 'training', spatial_transform=spatial_transform, temporal_transform=temporal_transform, target_transform=target_transform, sample_duration=opt.sample_duration) elif opt.dataset == 'nvgesture': training_data = NV(opt.video_path, opt.annotation_path, 'training', n_samples_for_each_video=1, spatial_transform=spatial_transform, temporal_transform=temporal_transform, target_transform=target_transform, sample_duration=opt.sample_duration) else: raise ValueError("Given dataset not available") return training_data
def get_training_set(opt, spatial_transform, temporal_transform, target_transform): assert opt.dataset in ['jester', 'nv', 'ipn'] if opt.train_validate: subset = ['training', 'validation'] else: subset = 'training' if opt.dataset == 'jester': training_data = Jester(opt.video_path, opt.annotation_path, subset, spatial_transform=spatial_transform, temporal_transform=temporal_transform, target_transform=target_transform, sample_duration=opt.sample_duration, modality=opt.modality) elif opt.dataset == 'egogesture': training_data = EgoGesture(opt.video_path, opt.annotation_path, subset, spatial_transform=spatial_transform, temporal_transform=temporal_transform, target_transform=target_transform, sample_duration=opt.sample_duration, modality=opt.modality) elif opt.dataset == 'nv': training_data = NV(opt.video_path, opt.annotation_path, subset, spatial_transform=spatial_transform, temporal_transform=temporal_transform, target_transform=target_transform, sample_duration=opt.sample_duration, modality=opt.modality) elif opt.dataset == 'ipn': training_data = IPN(opt.video_path, opt.annotation_path, subset, spatial_transform=spatial_transform, temporal_transform=temporal_transform, target_transform=target_transform, sample_duration=opt.sample_duration, modality=opt.modality) elif opt.dataset == 'denso': training_data = Denso(opt.video_path, opt.annotation_path, subset, spatial_transform=spatial_transform, temporal_transform=temporal_transform, target_transform=target_transform, sample_duration=opt.sample_duration, modality=opt.modality, no_subject_crop=opt.no_scrop) elif opt.dataset == 'AHG': training_data = AHG(opt.video_path, opt.annotation_path, subset, spatial_transform=spatial_transform, temporal_transform=temporal_transform, target_transform=target_transform, sample_duration=opt.sample_duration, modality=opt.modality, no_subject_crop=opt.no_scrop) return training_data
def get_validation_set(opt, spatial_transform, temporal_transform, target_transform): assert opt.dataset in ['jester', 'nv', 'ipn'] if opt.dataset == 'jester': validation_data = Jester(opt.video_path, opt.annotation_path, 'validation', opt.n_val_samples, spatial_transform, temporal_transform, target_transform, modality=opt.modality, sample_duration=opt.sample_duration) elif opt.dataset == 'egogesture': validation_data = EgoGesture(opt.video_path, opt.annotation_path, 'validation', opt.n_val_samples, spatial_transform, temporal_transform, target_transform, modality=opt.modality, sample_duration=opt.sample_duration) elif opt.dataset == 'nv': validation_data = NV(opt.video_path, opt.annotation_path, 'validation', spatial_transform=spatial_transform, temporal_transform=temporal_transform, target_transform=target_transform, sample_duration=opt.sample_duration, modality=opt.modality) elif opt.dataset == 'ipn': validation_data = IPN(opt.video_path, opt.annotation_path, 'validation', spatial_transform=spatial_transform, temporal_transform=temporal_transform, target_transform=target_transform, sample_duration=opt.sample_duration, modality=opt.modality) elif opt.dataset == 'denso': validation_data = Denso(opt.video_path, opt.annotation_path, 'validation', true_valid=opt.true_valid, spatial_transform=spatial_transform, temporal_transform=temporal_transform, target_transform=target_transform, sample_duration=opt.sample_duration, modality=opt.modality, no_subject_crop=opt.no_scrop) elif opt.dataset == 'AHG': validation_data = AHG(opt.video_path, opt.annotation_path, 'validation', spatial_transform=spatial_transform, temporal_transform=temporal_transform, target_transform=target_transform, sample_duration=opt.sample_duration, modality=opt.modality, no_subject_crop=opt.no_scrop) return validation_data
def get_test_set(opt, spatial_transform, temporal_transform, target_transform): assert opt.dataset in ['jester', 'nv', 'ipn'] assert opt.test_subset in ['val', 'test'] if opt.test_subset == 'val': subset = 'validation' else: subset = 'testing' if opt.dataset == 'jester': test_data = Jester(opt.video_path, opt.annotation_path, subset, opt.n_val_samples, spatial_transform, temporal_transform, target_transform, modality=opt.modality, sample_duration=opt.sample_duration) elif opt.dataset == 'egogesture': test_data = EgoGesture(opt.video_path, opt.annotation_path, subset, opt.n_val_samples, spatial_transform, temporal_transform, target_transform, modality=opt.modality, sample_duration=opt.sample_duration) elif opt.dataset == 'nv': test_data = NV(opt.video_path, opt.annotation_path, 'validation', spatial_transform=spatial_transform, temporal_transform=temporal_transform, target_transform=target_transform, sample_duration=opt.sample_duration, modality=opt.modality) elif opt.dataset == 'ipn': test_data = IPN(opt.video_path, opt.annotation_path, 'validation', spatial_transform=spatial_transform, temporal_transform=temporal_transform, target_transform=target_transform, sample_duration=opt.sample_duration, modality=opt.modality, use_preprocessing=opt.use_preprocessing) elif opt.dataset == 'denso': test_data = Denso(opt.video_path, opt.annotation_path, subset, true_valid=opt.true_valid, spatial_transform=spatial_transform, temporal_transform=temporal_transform, target_transform=target_transform, sample_duration=opt.sample_duration, modality=opt.modality, no_subject_crop=opt.no_scrop) elif opt.dataset == 'AHG': test_data = AHG(opt.video_path, opt.annotation_path, subset, spatial_transform=spatial_transform, temporal_transform=temporal_transform, target_transform=target_transform, sample_duration=opt.sample_duration, modality=opt.modality, no_subject_crop=opt.no_scrop) return test_data
def get_test_set(opt, spatial_transform, temporal_transform, target_transform, spatio_temporal_transform=None): assert opt.dataset in [ 'kinetics', 'activitynet', 'ucf101', 'hmdb51', 'kth', 'kth2', 'sth', 'sth_init', 'gtea', 'jester', 'ucf50', 'ucf50_color', 'real', ] assert opt.test_subset in ['val', 'test'] if opt.test_subset == 'val': subset = 'validation' elif opt.test_subset == 'test': subset = 'testing' if opt.dataset == 'kinetics': test_data = Kinetics(opt.video_path, opt.annotation_path, subset, 0, spatial_transform, temporal_transform, target_transform, sample_duration=opt.sample_duration) elif opt.dataset == 'activitynet': test_data = ActivityNet(opt.video_path, opt.annotation_path, subset, True, 0, spatial_transform, temporal_transform, target_transform, sample_duration=opt.sample_duration) elif opt.dataset == 'ucf101': test_data = UCF101(opt.video_path, opt.annotation_path, subset, 10, spatial_transform=spatial_transform, temporal_transform=temporal_transform, spatio_temporal_transform=spatio_temporal_transform, target_transform=target_transform, sample_duration=opt.sample_duration) elif opt.dataset == 'hmdb51': test_data = HMDB51(opt.video_path, opt.annotation_path, subset, 0, spatial_transform=spatial_transform, temporal_transform=temporal_transform, spatio_temporal_transform=spatio_temporal_transform, target_transform=target_transform, sample_duration=opt.sample_duration) elif opt.dataset == 'kth': test_data = KTH(opt.video_path, opt.annotation_path, subset, 0, spatial_transform=spatial_transform, temporal_transform=temporal_transform, spatio_temporal_transform=spatio_temporal_transform, target_transform=target_transform, sample_duration=opt.sample_duration) elif opt.dataset == 'kth2': test_data = KTH2(opt.video_path, opt.annotation_path, subset, 0, spatial_transform=spatial_transform, temporal_transform=temporal_transform, spatio_temporal_transform=spatio_temporal_transform, target_transform=target_transform, sample_duration=opt.sample_duration) elif opt.dataset == 'sth': test_data = Something2( opt.video_path, opt.annotation_path, subset, 0, spatial_transform=spatial_transform, temporal_transform=temporal_transform, spatio_temporal_transform=spatio_temporal_transform, target_transform=target_transform, sample_duration=opt.sample_duration) elif opt.dataset == 'jester': test_data = Jester(opt.video_path, opt.annotation_path, subset, 0, spatial_transform=spatial_transform, temporal_transform=temporal_transform, spatio_temporal_transform=spatio_temporal_transform, target_transform=target_transform, sample_duration=opt.sample_duration) elif opt.dataset == 'sth_init': test_data = Something2Init( opt.video_path, opt.annotation_path, subset, 0, spatial_transform=spatial_transform, temporal_transform=temporal_transform, spatio_temporal_transform=spatio_temporal_transform, target_transform=target_transform, sample_duration=opt.sample_duration) elif opt.dataset == 'gtea': test_data = GTEA(opt.video_path, opt.annotation_path, subset, 0, spatial_transform=spatial_transform, temporal_transform=temporal_transform, spatio_temporal_transform=spatio_temporal_transform, target_transform=target_transform, sample_duration=opt.sample_duration, test_split=opt.test_split) elif opt.dataset == 'ucf50': test_data = UCF50(opt.video_path, opt.annotation_path, subset, 0, spatial_transform=spatial_transform, temporal_transform=temporal_transform, spatio_temporal_transform=spatio_temporal_transform, target_transform=target_transform, sample_duration=opt.sample_duration, test_split=opt.test_split) elif opt.dataset == 'ucf50_color': test_data = UCF50(opt.video_path, opt.annotation_path, subset, 0, spatial_transform=spatial_transform, temporal_transform=temporal_transform, spatio_temporal_transform=spatio_temporal_transform, target_transform=target_transform, sample_duration=opt.sample_duration, test_split=opt.test_split) elif opt.dataset == 'real': test_data = REAL(opt.video_path, opt.annotation_path, subset, 0, spatial_transform=spatial_transform, temporal_transform=temporal_transform, spatio_temporal_transform=spatio_temporal_transform, target_transform=target_transform, sample_duration=opt.sample_duration) return test_data
def get_validation_set(opt, spatial_transform, temporal_transform, target_transform, spatio_temporal_transform=None): assert opt.dataset in [ 'kinetics', 'activitynet', 'ucf101', 'hmdb51', 'kth', 'kth2', 'sth', 'sth_init', 'gtea', 'jester', 'ucf50', 'ucf50_color', ] if opt.dataset == 'kinetics': validation_data = Kinetics(opt.video_path, opt.annotation_path, 'validation', opt.n_val_samples, spatial_transform, temporal_transform, target_transform, sample_duration=opt.sample_duration) elif opt.dataset == 'activitynet': validation_data = ActivityNet(opt.video_path, opt.annotation_path, 'validation', False, opt.n_val_samples, spatial_transform, temporal_transform, target_transform, sample_duration=opt.sample_duration) elif opt.dataset == 'ucf101': validation_data = UCF101( opt.video_path, opt.annotation_path, 'validation', opt.n_val_samples, spatial_transform=spatial_transform, temporal_transform=temporal_transform, spatio_temporal_transform=spatio_temporal_transform, target_transform=target_transform, sample_duration=opt.sample_duration) elif opt.dataset == 'hmdb51': validation_data = HMDB51( opt.video_path, opt.annotation_path, 'validation', opt.n_val_samples, spatial_transform=spatial_transform, temporal_transform=temporal_transform, spatio_temporal_transform=spatio_temporal_transform, target_transform=target_transform, sample_duration=opt.sample_duration) elif opt.dataset == 'kth': validation_data = KTH( opt.video_path, opt.annotation_path, 'validation', opt.n_val_samples, spatial_transform=spatial_transform, temporal_transform=temporal_transform, spatio_temporal_transform=spatio_temporal_transform, target_transform=target_transform, sample_duration=opt.sample_duration) elif opt.dataset == 'kth2': validation_data = KTH2( opt.video_path, opt.annotation_path, 'validation', opt.n_val_samples, spatial_transform=spatial_transform, temporal_transform=temporal_transform, spatio_temporal_transform=spatio_temporal_transform, target_transform=target_transform, sample_duration=opt.sample_duration) elif opt.dataset == 'sth': validation_data = Something2( opt.video_path, opt.annotation_path, 'validation', spatial_transform=spatial_transform, temporal_transform=temporal_transform, spatio_temporal_transform=spatio_temporal_transform, target_transform=target_transform) elif opt.dataset == 'jester': validation_data = Jester( opt.video_path, opt.annotation_path, 'validation', spatial_transform=spatial_transform, temporal_transform=temporal_transform, spatio_temporal_transform=spatio_temporal_transform, target_transform=target_transform) elif opt.dataset == 'sth_init': validation_data = Something2Init( opt.video_path, opt.annotation_path, 'validation', spatial_transform=spatial_transform, temporal_transform=temporal_transform, spatio_temporal_transform=spatio_temporal_transform, target_transform=target_transform) elif opt.dataset == 'gtea': validation_data = GTEA( opt.video_path, opt.annotation_path, 'validation', spatial_transform=spatial_transform, temporal_transform=temporal_transform, spatio_temporal_transform=spatio_temporal_transform, target_transform=target_transform, test_split=opt.test_split) elif opt.dataset == 'ucf50': validation_data = UCF50( opt.video_path, opt.annotation_path, 'validation', spatial_transform=spatial_transform, temporal_transform=temporal_transform, spatio_temporal_transform=spatio_temporal_transform, target_transform=target_transform, test_split=opt.test_split) elif opt.dataset == 'ucf50_color': validation_data = UCF50( opt.video_path, opt.annotation_path, 'validation', spatial_transform=spatial_transform, temporal_transform=temporal_transform, spatio_temporal_transform=spatio_temporal_transform, target_transform=target_transform, test_split=opt.test_split) return validation_data