Example #1
0
               .format(self._devkit_path, self._get_comp_id(),
                       self._image_set, output_dir)
        print('Running:\n{}'.format(cmd))
        status = subprocess.call(cmd, shell=True)

    def evaluate_detections(self, all_boxes, output_dir):
        self._write_voc_results_file(all_boxes)
        self._do_python_eval(output_dir)
        if self.config['matlab_eval']:
            self._do_matlab_eval(output_dir)
        if self.config['cleanup']:
            for cls in self._classes:
                if cls == '__background__':
                    continue
                filename = self._get_voc_results_file_template().format(cls)
                os.remove(filename)

    def competition_mode(self, on):
        if on:
            self.config['use_salt'] = False
            self.config['cleanup'] = False
        else:
            self.config['use_salt'] = True
            self.config['cleanup'] = True

if __name__ == '__main__':
    from datasets.wider import wider
    d = wider()
    res = d.roidb
    from IPython import embed; embed()
Example #2
0
            split, year, use_diff=True))

# Set up coco_2014_<split>
for year in ['2014']:
    for split in ['train', 'val', 'minival', 'valminusminival', 'trainval']:
        name = 'coco_{}_{}'.format(year, split)
        __sets[name] = (lambda split=split, year=year: coco(split, year))

# Set up coco_2015_<split>
for year in ['2015']:
    for split in ['test', 'test-dev']:
        name = 'coco_{}_{}'.format(year, split)
        __sets[name] = (lambda split=split, year=year: coco(split, year))

# Set up wider dataset
for split in ['train', 'val', 'test']:
    name = 'WIDER_{}'.format(split)
    __sets[name] = (lambda split=split: wider(split))


def get_imdb(name):
    """Get an imdb (image database) by name."""
    if name not in __sets:
        raise KeyError('Unknown dataset: {}'.format(name))
    return __sets[name]()


def list_imdbs():
    """List all registered imdbs."""
    return list(__sets.keys())
Example #3
0
"""Factory method for easily getting imdbs by name."""
from datasets.wider import wider

import numpy as np

__sets = {}
for split in ['train', 'val', 'test', 'train_val']:
    name = 'wider_{}'.format(split)
    __sets[name] = (
        lambda split=split: wider(split, wider_path='./data/wider'))


def get_imdb(name):
    """Get an imdb (image database) by name."""
    if not __sets.has_key(name):
        raise KeyError('Unknown dataset: {}'.format(name))
    return __sets[name]()


def list_imdbs():
    """List all registered imdbs."""
    return __sets.keys()
Example #4
0
    for split in ['train', 'val', 'trainval', 'test', 'val1', 'val2']:
        name = 'psdbCrop_{}_{}'.format(year, split)
        __sets[name] = (lambda split=split, year=year: psdbCrop(split, year))

# Set up psdb_<year>_<split> using selective search "fast" mode
for year in ['2015']:
    for split in ['train', 'val', 'trainval', 'test']:
        name = 'psdb_{}_{}'.format(year, split)
        __sets[name] = (lambda split=split, year=year: psdb(split, year))


# Set up wider_<year>_<split> using selective search "fast" mode
for year in ['2015']:
    for split in ['train', 'val', 'trainval', 'test']:
        name = 'wider_{}_{}'.format(year, split)
        __sets[name] = (lambda split=split, year=year: wider(split, year))

# Set up aichal_<year>_<split> using selective search "fast" mode
for year in ['2017']:
    for split in ['train', 'val', 'trainval', 'test']:
        name = 'aichal_{}_{}'.format(year, split)
        __sets[name] = (lambda split=split, year=year: aichal(split, year))


# Set up aichalCrop_<year>_<split> using selective search "fast" mode
for year in ['2017']:
    for split in ['train', 'val', 'trainval', 'test']:
        name = 'aichalCrop_{}_{}'.format(year, split)
        __sets[name] = (lambda split=split, year=year: aichalCrop(split, year))

Example #5
0
        print('Running:\n{}'.format(cmd))
        status = subprocess.call(cmd, shell=True)

    def evaluate_detections(self, all_boxes, output_dir):
        self._write_voc_results_file(all_boxes)
        self._do_python_eval(output_dir)
        if self.config['matlab_eval']:
            self._do_matlab_eval(output_dir)
        if self.config['cleanup']:
            for cls in self._classes:
                if cls == '__background__':
                    continue
                filename = self._get_voc_results_file_template().format(cls)
                os.remove(filename)

    def competition_mode(self, on):
        if on:
            self.config['use_salt'] = False
            self.config['cleanup'] = False
        else:
            self.config['use_salt'] = True
            self.config['cleanup'] = True


if __name__ == '__main__':
    from datasets.wider import wider
    d = wider()
    res = d.roidb
    from IPython import embed
    embed()
# ------------------------------------------------------------------------------------------------
# This file is a modified version of https://github.com/rbgirshick/py-faster-rcnn by Ross Girshick
# Modified by Mahyar Najibi
# ------------------------------------------------------------------------------------------------
from datasets.wider import wider

__sets = {}

for split in ['train','val','test']:
    name = 'wider_{}'.format(split)
    __sets[name] = (lambda split=split: wider(split))


def get_imdb(name):
    """Get an imdb (image database) by name."""
    if not __sets.has_key(name):
        raise KeyError('Unknown dataset: {}'.format(name))
    return __sets[name]()


Example #7
0
    #
    # def evaluate_detections(self, all_boxes, output_dir):
    #   self._write_voc_results_file(all_boxes)
    #   self._do_python_eval(output_dir)
    #   if self.config['matlab_eval']:
    #     self._do_matlab_eval(output_dir)
    #   if self.config['cleanup']:
    #     for cls in self._classes:
    #       if cls == '__background__':
    #         continue
    #       filename = self._get_voc_results_file_template().format(cls)
    #       os.remove(filename)

    def competition_mode(self, on):
        if on:
            self.config['use_salt'] = False
            self.config['cleanup'] = False
        else:
            self.config['use_salt'] = True
            self.config['cleanup'] = True


if __name__ == '__main__':
    from datasets.wider import wider

    d = wider('train')
    res = d.roidb
    from IPython import embed

    embed()