Example #1
0
def main():
    # opt.manualSeed = random.randint(1, 10000)
    # # opt.manualSeed = 1
    # random.seed(opt.manualSeed)
    # torch.manual_seed(opt.manualSeed)

    torch.set_printoptions(threshold=5000)
    # device_ids = [0,1]
    cudnn.benchmark = True
    if opt.dataset == 'ycb':
        opt.num_objects = 21  #number of object classes in the dataset
        opt.num_points = 1000  #number of points on the input pointcloud
        opt.outf = 'trained_models/ycb'  #folder to save trained models
        opt.log_dir = 'experiments/logs/ycb'  #folder to save logs
        opt.repeat_epoch = 3  #number of repeat times for one epoch training
    elif opt.dataset == 'linemod':
        opt.num_objects = 13
        opt.num_points = 500
        opt.outf = 'trained_models/linemod'
        opt.log_dir = 'experiments/logs/linemod'
        opt.repeat_epoch = 20
    else:
        print('Unknown dataset')
        return

    estimator = PoseNet(num_points=opt.num_points, num_obj=opt.num_objects)

    estimator.cuda()
    refiner = PoseRefineNet(num_points=opt.num_points, num_obj=opt.num_objects)
    refiner.cuda()
    # estimator = nn.DataParallel(estimator, device_ids=device_ids)

    if opt.resume_posenet != '':
        estimator.load_state_dict(
            torch.load('{0}/{1}'.format(opt.outf, opt.resume_posenet)))

    if opt.resume_refinenet != '':
        refiner.load_state_dict(
            torch.load('{0}/{1}'.format(opt.outf, opt.resume_refinenet)))
        opt.refine_start = True
        opt.decay_start = True
        opt.lr *= opt.lr_rate
        opt.w *= opt.w_rate
        opt.batch_size = int(opt.batch_size / opt.iteration)
        optimizer = optim.Adam(refiner.parameters(), lr=opt.lr)
    else:
        print('no refinement')
        opt.refine_start = False
        opt.decay_start = False
        optimizer = optim.Adam(estimator.parameters(), lr=opt.lr)
        # optimizer = nn.DataParallel(optimizer, device_ids=device_ids)

    if opt.dataset == 'ycb':
        dataset = PoseDataset_ycb('train', opt.num_points, False,
                                  opt.dataset_root, opt.noise_trans,
                                  opt.refine_start)
        # print(dataset.list)
    elif opt.dataset == 'linemod':
        dataset = PoseDataset_linemod('train', opt.num_points, True,
                                      opt.dataset_root, opt.noise_trans,
                                      opt.refine_start)
    dataloader = torch.utils.data.DataLoader(dataset,
                                             batch_size=1,
                                             shuffle=True,
                                             num_workers=opt.workers)
    if opt.dataset == 'ycb':
        test_dataset = PoseDataset_ycb('test', opt.num_points, False,
                                       opt.dataset_root, 0.0, opt.refine_start)
    elif opt.dataset == 'linemod':
        test_dataset = PoseDataset_linemod('test', opt.num_points, False,
                                           opt.dataset_root, 0.0,
                                           opt.refine_start)
    testdataloader = torch.utils.data.DataLoader(test_dataset,
                                                 batch_size=1,
                                                 shuffle=False,
                                                 num_workers=opt.workers)

    opt.sym_list = dataset.get_sym_list()
    opt.num_points_mesh = dataset.get_num_points_mesh()

    # print('>>>>>>>>----------Dataset loaded!---------<<<<<<<<\nlength of the training set: {0}\nlength of the testing set: {1}\nnumber of sample points on mesh: {2}\nsymmetry object list: {3}'.format(len(dataset), len(test_dataset), opt.num_points_mesh, opt.sym_list))

    criterion = Loss(opt.num_points_mesh, opt.sym_list)
    # criterion_refine = Loss_refine(opt.num_points_mesh, opt.sym_list)

    best_test = np.Inf
    best_epoch = 0

    if opt.start_epoch == 1:
        for log in os.listdir(opt.log_dir):
            os.remove(os.path.join(opt.log_dir, log))
    st_time = time.time()

    count_gen = 0

    mode = 1

    if mode == 1:

        for epoch in range(opt.start_epoch, opt.nepoch):
            logger = setup_logger(
                'epoch%d' % epoch,
                os.path.join(opt.log_dir, 'epoch_%d_log.txt' % epoch))
            logger.info('Train time {0}'.format(
                time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() -
                                                         st_time)) + ', ' +
                'Training started'))
            train_count = 0
            train_dis_avg = 0.0
            if opt.refine_start:
                estimator.eval()
                refiner.train()
            else:
                estimator.train()
            optimizer.zero_grad()

            for rep in range(opt.repeat_epoch):
                for i, data in enumerate(dataloader, 0):
                    points, choose, img, target_sym, target_cen, idx, file_list_idx = data

                    if idx is 9 or idx is 16:
                        continue
                    # points, choose, img, target_sym, target_cen, target, idx, file_list_idx = data
                    # generate_obj_file(target_sym, target_cen, target, idx.squeeze())
                    # import pdb;pdb.set_trace()
                    points, choose, img, target_sym, target_cen, idx = Variable(points).cuda(), \
                    Variable(choose).cuda(), \
                    Variable(img).cuda(), \
                    Variable(target_sym).cuda(), \
                    Variable(target_cen).cuda(), \
                    Variable(idx).cuda()
                    # points, choose, img, target_sym, target_cen, idx = Variable(points), \
                    #                                                 Variable(choose), \
                    #                                                 Variable(img), \
                    #                                                 Variable(target_sym), \
                    #                                                 Variable(target_cen), \
                    #                                                 Variable(idx)
                    pred_norm, pred_on_plane, emb = estimator(
                        img, points, choose, idx)

                    # pred_norm_new = torch.cat((pred_norm, torch.zeros(1,pred_norm.size(1),1)),2)

                    # for i in range(pred_norm.size(1)):
                    #     pred_norm_new[0,i,2] = torch.sqrt(1 - pred_norm[0,i,0] * pred_norm[0,i,0] - pred_norm[0,i,1] * pred_norm[0,i,1])
                    # if epoch % 10 == 0:
                    #     generate_obj_file_pred(pred_norm, pred_on_plane, points, count_gen, idx)
                    #     count_gen += 1
                    # print(pred_norm[0,0,:])

                    loss = criterion(pred_norm, pred_on_plane, target_sym,
                                     target_cen, idx, points, opt.w,
                                     opt.refine_start)

                    # scene_idx = dataset.list[file_list_idx]

                    loss.backward()

                    # train_dis_avg += dis.item()
                    train_count += 1

                    if train_count % opt.batch_size == 0:
                        logger.info(
                            'Train time {0} Epoch {1} Batch {2} Frame {3}'.
                            format(
                                time.strftime(
                                    "%Hh %Mm %Ss",
                                    time.gmtime(time.time() - st_time)), epoch,
                                int(train_count / opt.batch_size),
                                train_count))
                        optimizer.step()
                        # for param_lr in optimizer.module.param_groups:
                        #         param_lr['lr'] /= 2
                        optimizer.zero_grad()
                        train_dis_avg = 0

                    if train_count % 5000 == 0:
                        print(pred_on_plane.max())
                        print(pred_on_plane.mean())

                    if train_count != 0 and train_count % 1000 == 0:
                        if opt.refine_start:
                            torch.save(
                                refiner.state_dict(),
                                '{0}/pose_refine_model_current.pth'.format(
                                    opt.outf))
                        else:
                            torch.save(
                                estimator.state_dict(),
                                '{0}/pose_model_current.pth'.format(opt.outf))

            print('>>>>>>>>----------epoch {0} train finish---------<<<<<<<<'.
                  format(epoch))

            logger = setup_logger(
                'epoch%d_test' % epoch,
                os.path.join(opt.log_dir, 'epoch_%d_test_log.txt' % epoch))
            logger.info('Test time {0}'.format(
                time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() -
                                                         st_time)) + ', ' +
                'Testing started'))
            test_loss = 0.0
            test_count = 0
            estimator.eval()
            # refiner.eval()

            # for rep in range(opt.repeat_epoch):
            #     for j, data in enumerate(testdataloader, 0):
            #         points, choose, img, target_sym, target_cen, idx, img_idx = data
            #         # points, choose, img, target, model_points, idx = Variable(points).cuda(), \
            #         #                                                  Variable(choose).cuda(), \
            #         #                                                  Variable(img).cuda(), \
            #         #                                                  Variable(target).cuda(), \
            #         #                                                  Variable(model_points).cuda(), \
            #         #                                                  Variable(idx).cuda()
            #         points, choose, img, target_sym, target_cen, idx = Variable(points), \
            #                                                             Variable(choose), \
            #                                                             Variable(img), \
            #                                                             Variable(target_sym), \
            #                                                             Variable(target_cen), \
            #                                                             Variable(idx)

            #         pred_norm, pred_on_plane, emb = estimator(img, points, choose, idx)
            #         loss = criterion(pred_norm, pred_on_plane, target_sym, target_cen, idx, points, opt.w, opt.refine_start)
            #         test_loss += loss

            #         logger.info('Test time {0} Test Frame No.{1}'.format(time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)), test_count))

            #         test_count += 1

            # test_loss = test_loss / test_count
            logger.info(
                'Test time {0} Epoch {1} TEST FINISH Avg dis: {2}'.format(
                    time.strftime("%Hh %Mm %Ss",
                                  time.gmtime(time.time() - st_time)), epoch,
                    test_loss))
            print(pred_on_plane.max())
            print(pred_on_plane.mean())
            bs, num_p, _ = pred_on_plane.size()
            # if epoch % 40 == 0:
            #     import pdb;pdb.set_trace()
            best_test = test_loss
            best_epoch = epoch
            if opt.refine_start:
                torch.save(
                    refiner.state_dict(),
                    '{0}/pose_refine_model_{1}_{2}.pth'.format(
                        opt.outf, epoch, test_loss))
            else:
                torch.save(
                    estimator.state_dict(),
                    '{0}/pose_model_{1}_{2}.pth'.format(
                        opt.outf, epoch, test_loss))
            print(epoch,
                  '>>>>>>>>----------BEST TEST MODEL SAVED---------<<<<<<<<')

            if best_test < opt.decay_margin and not opt.decay_start:
                opt.decay_start = True
                opt.lr *= opt.lr_rate
                # opt.w *= opt.w_rate
                optimizer = optim.Adam(estimator.parameters(), lr=opt.lr)

        estimator.load_state_dict(
            torch.load('{0}/pose_model_{1}_{2}.pth'.format(
                opt.outf, best_epoch, best_test)))
    else:
        estimator.load_state_dict(
            torch.load('{0}/pose_model_11_0.0.pth'.format(opt.outf)))

    product_list = []
    dist_list = []

    true_positives = 0
    false_positives = 0
    false_negatives = 0

    for index in range(len(test_dataset.list)):
        img = Image.open('{0}/data_v1/{1}-color.png'.format(
            test_dataset.root, test_dataset.list[index]))
        depth = np.array(
            Image.open('{0}/data_v1/{1}-depth.png'.format(
                test_dataset.root, test_dataset.list[index])))
        label = np.array(
            Image.open('{0}/data_v1/{1}-label.png'.format(
                test_dataset.root, test_dataset.list[index])))
        meta = scio.loadmat('{0}/data_v1/{1}-meta.mat'.format(
            test_dataset.root, test_dataset.list[index]))

        cam_cx = test_dataset.cam_cx_1
        cam_cy = test_dataset.cam_cy_1
        cam_fx = test_dataset.cam_fx_1
        cam_fy = test_dataset.cam_fy_1
        mask_back = ma.getmaskarray(ma.masked_equal(label, 0))

        obj = meta['cls_indexes'].flatten().astype(np.int32)
        for idx in range(0, len(obj)):
            print('object index: ', obj[idx])
            mask_depth = ma.getmaskarray(ma.masked_not_equal(depth, 0))
            mask_label = ma.getmaskarray(ma.masked_equal(label, obj[idx]))
            mask = mask_label * mask_depth
            if not (len(mask.nonzero()[0]) > test_dataset.minimum_num_pt
                    and len(test_dataset.symmetry[obj[idx]]['mirror']) > 0):
                continue

            rmin, rmax, cmin, cmax = get_bbox(mask_label)
            img_temp = np.transpose(np.array(img)[:, :, :3],
                                    (2, 0, 1))[:, rmin:rmax, cmin:cmax]

            img_masked = img_temp
            target_r = meta['poses'][:, :, idx][:, 0:3]
            target_t = np.array(meta['poses'][:, :, idx][:, 3:4].flatten())
            add_t = np.array([
                random.uniform(-test_dataset.noise_trans,
                               test_dataset.noise_trans) for i in range(3)
            ])

            choose = mask[rmin:rmax, cmin:cmax].flatten().nonzero()[0]
            if len(choose) > test_dataset.num_pt:
                c_mask = np.zeros(len(choose), dtype=int)
                c_mask[:test_dataset.num_pt] = 1
                np.random.shuffle(c_mask)
                choose = choose[c_mask.nonzero()]
            else:
                choose = np.pad(choose, (0, test_dataset.num_pt - len(choose)),
                                'wrap')

            depth_masked = depth[
                rmin:rmax,
                cmin:cmax].flatten()[choose][:, np.newaxis].astype(np.float32)
            xmap_masked = test_dataset.xmap[
                rmin:rmax,
                cmin:cmax].flatten()[choose][:, np.newaxis].astype(np.float32)
            ymap_masked = test_dataset.ymap[
                rmin:rmax,
                cmin:cmax].flatten()[choose][:, np.newaxis].astype(np.float32)
            choose = np.array([choose])

            cam_scale = meta['factor_depth'][0][0]
            pt2 = depth_masked / cam_scale
            pt0 = (ymap_masked - cam_cx) * pt2 / cam_fx
            pt1 = (xmap_masked - cam_cy) * pt2 / cam_fy
            cloud = np.concatenate((pt0, pt1, pt2), axis=1)

            dellist = [j for j in range(0, len(test_dataset.cld[obj[idx]]))]

            # dellist = random.sample(dellist, len(test_dataset.cld[obj[idx]]) - test_dataset.num_pt_mesh_small)
            # model_points = np.delete(test_dataset.cld[obj[idx]], dellist, axis=0)
            model_points = test_dataset.cld[obj[idx]]

            target_sym = []
            for sym in test_dataset.symmetry[obj[idx]]['mirror']:
                target_sym.append(np.dot(sym, target_r.T))
            target_sym = np.array(target_sym)

            target_cen = np.add(test_dataset.symmetry[obj[idx]]['center'],
                                target_t)

            target = np.dot(model_points, target_r.T)
            target = np.add(target, target_t)

            print('ground truth norm: ', target_sym)
            print('ground truth center: ', target_cen)
            points_ten, choose_ten, img_ten, target_sym_ten, target_cen_ten, target_ten, idx_ten = \
               torch.from_numpy(cloud.astype(np.float32)).unsqueeze(0), \
               torch.LongTensor(choose.astype(np.int32)).unsqueeze(0), \
               test_dataset.norm(torch.from_numpy(img_masked.astype(np.float32))).unsqueeze(0), \
               torch.from_numpy(target_sym.astype(np.float32)).unsqueeze(0), \
               torch.from_numpy(target_cen.astype(np.float32)).unsqueeze(0), \
               torch.from_numpy(target.astype(np.float32)).unsqueeze(0), \
               torch.LongTensor([obj[idx]-1]).unsqueeze(0)

            # print(img_ten.size())
            # print(points_ten.size())
            # print(choose_ten.size())
            # print(idx_ten.size())

            points_ten, choose_ten, img_ten, target_sym_ten, target_cen_ten, idx_ten = Variable(points_ten).cuda(), \
                                                                Variable(choose_ten).cuda(), \
                                                                Variable(img_ten).cuda(), \
                                                                Variable(target_sym_ten).cuda(), \
                                                                Variable(target_cen_ten).cuda(), \
                                                                Variable(idx_ten).cuda()

            pred_norm, pred_on_plane, emb = estimator(img_ten, points_ten,
                                                      choose_ten, idx_ten)

            # import pdb;pdb.set_trace()

            bs, num_p, _ = pred_on_plane.size()

            # pred_norm = torch.cat((pred_norm, torch.zeros(1,pred_norm.size(1),1)),2)

            # for i in range(pred_norm.size(1)):
            #     pred_norm[0,i,2] = torch.sqrt(1 - pred_norm[0,i,0] * pred_norm[0,i,0] - pred_norm[0,i,1] * pred_norm[0,i,1])
            # pred_norm = pred_norm / (torch.norm(pred_norm, dim=2).view(bs, num_p, 1))

            generate_obj_file_norm_pred(
                pred_norm / (torch.norm(pred_norm, dim=2).view(bs, num_p, 1)),
                pred_on_plane, points_ten,
                test_dataset.list[index].split('/')[0],
                test_dataset.list[index].split('/')[1], obj[idx])

            loss = criterion(pred_norm, pred_on_plane, target_sym_ten,
                             target_cen_ten, idx, points_ten, opt.w,
                             opt.refine_start)
            # print('test loss: ', loss)

            # bs, num_p, _ = pred_on_plane.size()
            pred_norm = pred_norm / (torch.norm(pred_norm, dim=2).view(
                bs, num_p, 1))
            pred_norm = pred_norm.cpu().detach().numpy()
            pred_on_plane = pred_on_plane.cpu().detach().numpy()
            points = points_ten.cpu().detach().numpy()

            clustering_points_idx = np.where(
                pred_on_plane > pred_on_plane.max() * PRED_ON_PLANE_FACTOR +
                pred_on_plane.mean() * (1 - PRED_ON_PLANE_FACTOR))[1]
            clustering_norm = pred_norm[0, clustering_points_idx, :]
            clustering_points = points[0, clustering_points_idx, :]
            num_points = len(clustering_points_idx)

            # import pdb;pdb.set_trace()

            close_thresh = 5e-3
            broad_thresh = 7e-3

            sym_flag = [0 for i in range(target_sym.shape[0])]
            sym_max_product = [0.0 for i in range(target_sym.shape[0])]
            sym_dist = [0.0 for i in range(target_sym.shape[0])]

            count_pred = 0
            while True:
                if num_points == 0:
                    break
                count_pred += 1
                if count_pred > target_sym.shape[0]:
                    break
                best_fit_num = 0

                count_try = 0
                while True:
                    if count_try > 3 or num_points <= 1:
                        break

                    pick_idx = np.random.randint(0, num_points - 1)
                    pick_point = clustering_points[pick_idx]
                    # proposal_norm = np.array(Plane(Point3D(pick_points[0]),Point3D(pick_points[1]),Point3D(pick_points[2])).normal_vector).astype(np.float32)
                    proposal_norm = clustering_norm[pick_idx]
                    proposal_norm = proposal_norm[:, np.newaxis]

                    # import pdb;pdb.set_trace()
                    proposal_point = pick_point
                    # highest_pred_idx = np.argmax(pred_on_plane[0,clustering_points_idx,:])
                    # highest_pred_loc = clustering_points[highest_pred_idx]
                    # proposal_norm = clustering_norm[highest_pred_idx][:,np.newaxis]
                    clustering_diff = clustering_points - proposal_point
                    clustering_dist = np.abs(
                        np.matmul(clustering_diff, proposal_norm))

                    broad_inliers = np.where(clustering_dist < broad_thresh)[0]
                    broad_inlier_num = len(broad_inliers)

                    close_inliers = np.where(clustering_dist < close_thresh)[0]
                    close_inlier_num = len(close_inliers)

                    if broad_inlier_num > num_points / (5 - count_pred):
                        best_fit_num = close_inlier_num
                        best_fit_norm = proposal_norm
                        best_fit_cen = clustering_points[close_inliers].mean(0)
                        best_fit_idx = clustering_points_idx[close_inliers]
                        scrub_idx = clustering_points_idx[broad_inliers]
                        break
                    else:
                        count_try += 1
                    # else:
                    #     np.delete(clustering_points_idx, highest_pred_idx)
                    #     num_points -= 1

                if count_try > 3 or num_points <= 1:
                    break

                for i in range(2):

                    def f(x):
                        dist = 0
                        x = x / LA.norm(x)
                        for point in clustering_points[broad_inliers]:
                            dist += np.abs(point[0] * x[0] + point[1] * x[1] +
                                           point[2] * np.sqrt(1 - x[0] * x[0] -
                                                              x[1] * x[1]) +
                                           x[2])
                        return dist

                    start_point = np.copy(proposal_norm)
                    start_point[2] = (-proposal_point *
                                      proposal_norm[:, 0]).sum()

                    min_point = fmin(f, start_point)
                    new_pred_loc = np.array([
                        0, 0, -min_point[2] /
                        np.sqrt(1 - min_point[0] * min_point[0] -
                                min_point[1] * min_point[1])
                    ])

                    min_point[2] = np.sqrt(1 - min_point[0] * min_point[0] -
                                           min_point[1] * min_point[1])
                    new_proposal_norm = min_point
                    clustering_diff = clustering_points - new_pred_loc
                    clustering_dist = np.abs(
                        np.matmul(clustering_diff, new_proposal_norm))

                    close_inliers = np.where(clustering_dist < close_thresh)[0]
                    new_close_inlier_num = len(close_inliers)

                    broad_inliers = np.where(clustering_dist < broad_thresh)[0]
                    new_broad_inlier_num = len(broad_inliers)
                    # import pdb;pdb.set_trace()
                    if new_close_inlier_num > close_inlier_num:
                        best_fit_num = new_close_inlier_num
                        # proposal_point = clustering_points_idx[clustering_dist.argmin()]
                        proposal_point = new_pred_loc
                        best_fit_norm = new_proposal_norm[:, np.newaxis]
                        best_fit_idx = clustering_points_idx[close_inliers]
                        scrub_idx = clustering_points_idx[broad_inliers]
                        best_fit_cen = new_pred_loc
                        inlier_num = new_inlier_num
                        proposal_norm = best_fit_norm

                # other_idx_pick = other_idx[other_idx_pick]

                # if len(other_idx_pick) > num_points//6:
                #     pick_idx = np.concatenate((pick_idx, other_idx_pick), 0)
                #     norm_proposal_new = clustering_norm[pick_idx,:].mean(0)
                #     norm_proposal_new = norm_proposal_new / LA.norm(norm_proposal_new)
                #     inlier_num_new = len(np.where(np.abs(clustering_norm-norm_proposal_new).sum(1) < thresh)[0])
                #     if inlier_num_new > inlier_num:
                #         best_fit_num = inlier_num_new
                #         best_fit_idx = np.where(np.abs(clustering_norm-norm_proposal_new).sum(1) < thresh_scrap)
                #         best_fit_norm = norm_proposal_new
                #         best_fit_cen = clustering_points[best_fit_idx].mean(0)

                if best_fit_num == 0:
                    break
                else:
                    print('predicted norm:{}, predicted point:{}'.format(
                        best_fit_norm, best_fit_cen))

                    max_idx = np.argmax(np.matmul(target_sym, best_fit_norm))
                    sym_flag[max_idx] += 1
                    sym_product = np.abs((target_sym[max_idx] *
                                          (best_fit_cen - target_cen)).sum())
                    if sym_max_product[max_idx] < sym_product:
                        sym_max_product[max_idx] = sym_product
                        sym_dist[max_idx] = np.matmul(target_sym,
                                                      best_fit_norm)[max_idx]

                    # generate_obj_file_sym_pred(best_fit_norm, best_fit_cen, target_ten, test_dataset.list[index].split('/')[0], test_dataset.list[index].split('/')[1], obj[idx], count_pred)
                    # import pdb;pdb.set_trace()
                    clustering_points_idx = np.setdiff1d(
                        clustering_points_idx, scrub_idx)

                    clustering_norm = pred_norm[0, clustering_points_idx, :]
                    clustering_points = points[0, clustering_points_idx, :]
                    num_points = len(clustering_points_idx)

            for i in range(target_sym.shape[0]):
                if sym_flag[i] >= 1:
                    dist_list.append(sym_dist[i])
                    product_list.append(sym_max_product[i])
                    false_positives += sym_flag[i] - 1
                else:
                    false_negatives += 1

    product_list = np.array(product_list)
    dist_list = np.array(dist_list)
    # import pdb;pdb.set_trace()
    total_num = len(product_list)

    prec = []
    recall = []
    for t in range(1000):
        good_ones = len(
            np.logical_and(dist_list < 0.5 * t / 1000,
                           product_list > math.cos(math.pi * 0.25 * t / 1000)))

        prec.append(good_ones * 1.0 / (false_positives + total_num))
        recall.append(good_ones * 1.0 / (good_ones + false_negatives))

    print(prec)
    print(recall)
    plt.plot(recall, prec, 'r')
    plt.axis([0, 1, 0, 1])
    plt.savefig('prec-recall.png')
Example #2
0
def main():
    opt.manualSeed = random.randint(1, 10000)
    random.seed(opt.manualSeed)
    torch.manual_seed(opt.manualSeed)

    if opt.dataset == 'ycb':
        opt.num_objects = 21 #number of object classes in the dataset
        opt.num_points = 1000 #number of points on the input pointcloud
        opt.outf = 'trained_models/ycb' #folder to save trained models
        opt.log_dir = 'experiments/logs/ycb' #folder to save logs
        opt.repeat_epoch = 1 #number of repeat times for one epoch training
    elif opt.dataset == 'linemod':
        opt.num_objects = 13
        opt.num_points = 500
        opt.outf = 'trained_models/linemod'
        opt.log_dir = 'experiments/logs/linemod'
        opt.repeat_epoch = 20
    elif opt.dataset == 'ycb_sim':
        opt.num_objects = 9 #number of object classes in the dataset
        opt.num_points = 1000 #number of points on the input pointcloud
        opt.outf = 'trained_models/ycb_sim' #folder to save trained models
        opt.log_dir = 'experiments/logs/ycb_sim' #folder to save logs
        opt.repeat_epoch = 1 #number of repeat times for one epoch training
    else:
        print('Unknown dataset')
        return

    estimator = PoseNet(num_points = opt.num_points, num_obj = opt.num_objects)
    estimator.cuda()
    refiner = PoseRefineNet(num_points = opt.num_points, num_obj = opt.num_objects)
    refiner.cuda()

    if opt.resume_posenet != '':
        estimator.load_state_dict(torch.load('{0}/{1}'.format(opt.outf, opt.resume_posenet)))

    if opt.resume_refinenet != '':
        refiner.load_state_dict(torch.load('{0}/{1}'.format(opt.outf, opt.resume_refinenet)))
        opt.refine_start = True
        opt.decay_start = True
        opt.lr *= opt.lr_rate
        opt.w *= opt.w_rate
        opt.batch_size = int(opt.batch_size / opt.iteration)
        optimizer = optim.Adam(refiner.parameters(), lr=opt.lr)
    else:
        opt.refine_start = False
        opt.decay_start = False
        optimizer = optim.Adam(estimator.parameters(), lr=opt.lr)

    if opt.dataset == 'ycb':
        dataset = PoseDataset_ycb('train', opt.num_points, True, opt.dataset_root, opt.noise_trans, opt.refine_start)
    elif opt.dataset == 'linemod':
        dataset = PoseDataset_linemod('train', opt.num_points, True, opt.dataset_root, opt.noise_trans, opt.refine_start)
    elif opt.dataset == 'ycb_sim':
        dataset = PoseDataset_ycb_sim('train', opt.num_points, True, opt.dataset_root, opt.noise_trans, opt.refine_start)
    dataloader = torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=True, num_workers=opt.workers)
    if opt.dataset == 'ycb':
        test_dataset = PoseDataset_ycb('test', opt.num_points, False, opt.dataset_root, 0.0, opt.refine_start)
    elif opt.dataset == 'linemod':
        test_dataset = PoseDataset_linemod('test', opt.num_points, False, opt.dataset_root, 0.0, opt.refine_start)
    elif opt.dataset == 'ycb_sim':
        test_dataset = PoseDataset_ycb_sim('test', opt.num_points, True, opt.dataset_root, opt.noise_trans, opt.refine_start)
    testdataloader = torch.utils.data.DataLoader(test_dataset, batch_size=1, shuffle=False, num_workers=opt.workers)
    
    opt.sym_list = dataset.get_sym_list()
    opt.num_points_mesh = dataset.get_num_points_mesh()

    print('>>>>>>>>----------Dataset loaded!---------<<<<<<<<\nlength of the training set: {0}\nlength of the testing set: {1}\nnumber of sample points on mesh: {2}\nsymmetry object list: {3}'.format(len(dataset), len(test_dataset), opt.num_points_mesh, opt.sym_list))

    criterion = Loss(opt.num_points_mesh, opt.sym_list)
    criterion_refine = Loss_refine(opt.num_points_mesh, opt.sym_list)

    best_test = np.Inf

    if opt.start_epoch == 1:
        for log in os.listdir(opt.log_dir):
            os.remove(os.path.join(opt.log_dir, log))
    st_time = time.time()

    for epoch in range(opt.start_epoch, opt.nepoch):
        logger = setup_logger('epoch%d' % epoch, os.path.join(opt.log_dir, 'epoch_%d_log.txt' % epoch))
        logger.info('Train time {0}'.format(time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)) + ', ' + 'Training started'))
        train_count = 0
        train_dis_avg = 0.0
        if opt.refine_start:
            estimator.eval()
            refiner.train()
        else:
            estimator.train()
        optimizer.zero_grad()

        for rep in range(opt.repeat_epoch):
            for i, data in enumerate(dataloader, 0):
                points, choose, img, target, model_points, idx = data
                points, choose, img, target, model_points, idx = Variable(points).cuda(), \
                                                                 Variable(choose).cuda(), \
                                                                 Variable(img).cuda(), \
                                                                 Variable(target).cuda(), \
                                                                 Variable(model_points).cuda(), \
                                                                 Variable(idx).cuda()
                pred_r, pred_t, pred_c, emb = estimator(img, points, choose, idx)
                loss, dis, new_points, new_target = criterion(pred_r, pred_t, pred_c, target, model_points, idx, points, opt.w, opt.refine_start)
                
                if opt.refine_start:
                    for ite in range(0, opt.iteration):
                        pred_r, pred_t = refiner(new_points, emb, idx)
                        dis, new_points, new_target = criterion_refine(pred_r, pred_t, new_target, model_points, idx, new_points)
                        dis.backward()
                else:
                    loss.backward()

                train_dis_avg += dis.item()
                train_count += 1

                if train_count % opt.batch_size == 0:
                    logger.info('Train time {0} Epoch {1} Batch {2} Frame {3} Avg_dis:{4}'.format(time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)), epoch, int(train_count / opt.batch_size), train_count, train_dis_avg / opt.batch_size))
                    optimizer.step()
                    optimizer.zero_grad()
                    train_dis_avg = 0

                if train_count != 0 and train_count % 1000 == 0:
                    if opt.refine_start:
                        torch.save(refiner.state_dict(), '{0}/pose_refine_model_current.pth'.format(opt.outf))
                    else:
                        torch.save(estimator.state_dict(), '{0}/pose_model_current.pth'.format(opt.outf))

        print('>>>>>>>>----------epoch {0} train finish---------<<<<<<<<'.format(epoch))

        del_logger(logger)
        logger = setup_logger('epoch%d_test' % epoch, os.path.join(opt.log_dir, 'epoch_%d_test_log.txt' % epoch))
        logger.info('Test time {0}'.format(time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)) + ', ' + 'Testing started'))
        test_dis = 0.0
        test_count = 0
        estimator.eval()
        refiner.eval()

        for j, data in enumerate(testdataloader, 0):
            points, choose, img, target, model_points, idx = data
            points, choose, img, target, model_points, idx = Variable(points).cuda(), \
                                                             Variable(choose).cuda(), \
                                                             Variable(img).cuda(), \
                                                             Variable(target).cuda(), \
                                                             Variable(model_points).cuda(), \
                                                             Variable(idx).cuda()
            pred_r, pred_t, pred_c, emb = estimator(img, points, choose, idx)
            _, dis, new_points, new_target = criterion(pred_r, pred_t, pred_c, target, model_points, idx, points, opt.w, opt.refine_start)

            if opt.refine_start:
                for ite in range(0, opt.iteration):
                    pred_r, pred_t = refiner(new_points, emb, idx)
                    dis, new_points, new_target = criterion_refine(pred_r, pred_t, new_target, model_points, idx, new_points)

            test_dis += dis.item()
            logger.info('Test time {0} Test Frame No.{1} dis:{2}'.format(time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)), test_count, dis))

            test_count += 1

        test_dis = test_dis / test_count
        logger.info('Test time {0} Epoch {1} TEST FINISH Avg dis: {2}'.format(time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)), epoch, test_dis))
        if test_dis <= best_test:
            best_test = test_dis
            if opt.refine_start:
                torch.save(refiner.state_dict(), '{0}/pose_refine_model_{1}_{2}.pth'.format(opt.outf, epoch, test_dis))
            else:
                torch.save(estimator.state_dict(), '{0}/pose_model_{1}_{2}.pth'.format(opt.outf, epoch, test_dis))
            print(epoch, '>>>>>>>>----------BEST TEST MODEL SAVED---------<<<<<<<<')

        if best_test < opt.decay_margin and not opt.decay_start:
            opt.decay_start = True
            opt.lr *= opt.lr_rate
            opt.w *= opt.w_rate
            optimizer = optim.Adam(estimator.parameters(), lr=opt.lr)

        if best_test < opt.refine_margin and not opt.refine_start:
            opt.refine_start = True
            opt.batch_size = int(opt.batch_size / opt.iteration)
            optimizer = optim.Adam(refiner.parameters(), lr=opt.lr)

            if opt.dataset == 'ycb':
                dataset = PoseDataset_ycb('train', opt.num_points, True, opt.dataset_root, opt.noise_trans, opt.refine_start)
            elif opt.dataset == 'linemod':
                dataset = PoseDataset_linemod('train', opt.num_points, True, opt.dataset_root, opt.noise_trans, opt.refine_start)
            elif opt.dataset == 'ycb_sim':
                dataset = PoseDataset_ycb_sim('train', opt.num_points, True, opt.dataset_root, opt.noise_trans, opt.refine_start)
            dataloader = torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=True, num_workers=opt.workers)
            if opt.dataset == 'ycb':
                test_dataset = PoseDataset_ycb('test', opt.num_points, False, opt.dataset_root, 0.0, opt.refine_start)
            elif opt.dataset == 'linemod':
                test_dataset = PoseDataset_linemod('test', opt.num_points, False, opt.dataset_root, 0.0, opt.refine_start)
            elif opt.dataset == 'ycb_sim':
                test_dataset = PoseDataset_ycb_sim('test', opt.num_points, True, opt.dataset_root, opt.noise_trans, opt.refine_start)
            testdataloader = torch.utils.data.DataLoader(test_dataset, batch_size=1, shuffle=False, num_workers=opt.workers)
            
            opt.sym_list = dataset.get_sym_list()
            opt.num_points_mesh = dataset.get_num_points_mesh()

            print('>>>>>>>>----------Dataset loaded!---------<<<<<<<<\nlength of the training set: {0}\nlength of the testing set: {1}\nnumber of sample points on mesh: {2}\nsymmetry object list: {3}'.format(len(dataset), len(test_dataset), opt.num_points_mesh, opt.sym_list))

            criterion = Loss(opt.num_points_mesh, opt.sym_list)
            criterion_refine = Loss_refine(opt.num_points_mesh, opt.sym_list)
        
        del_logger(logger)
Example #3
0
def main():
    opt.manualSeed = random.randint(1, 10000)
    random.seed(opt.manualSeed)
    torch.manual_seed(opt.manualSeed)

    if opt.dataset == 'linemod':
        opt.num_objects = 13
        opt.num_points = 500
        opt.outf = 'trained_models/linemod'
        opt.log_dir = 'experiments/logs/linemod'
        output_results = 'check_linemod.txt'
        opt.repeat_epoch = 20

    elif opt.dataset == 'ycb':
        opt.num_objects = 21  #number of object classes in the dataset
        opt.num_points = 1000  #number of points on the input pointcloud
        opt.outf = 'trained_models/ycb'  #folder to save trained models
        opt.log_dir = 'experiments/logs/ycb'  #folder to save logs
        opt.repeat_epoch = 1  #number of repeat times for one epoch training

    elif opt.dataset == 'ycb-syn':
        opt.num_objects = 31  # number of object classes in the dataset
        opt.num_points = 1000  # number of points on the input pointcloud
        opt.dataset_root = '/data/Akeaveny/Datasets/ycb_syn'
        opt.outf = 'trained_models/ycb_syn/ycb_syn2'  # folder to save trained models
        opt.log_dir = 'experiments/logs/ycb_syn/ycb_syn2'  # folder to save logs
        output_results = 'check_ycb_syn.txt'

        opt.w = 0.05
        opt.refine_margin = 0.01

    elif opt.dataset == 'arl':
        opt.num_objects = 10  # number of object classes in the dataset
        opt.num_points = 1000  # number of points on the input pointcloud
        opt.dataset_root = '/data/Akeaveny/Datasets/arl_dataset'
        opt.outf = 'trained_models/arl/clutter/arl_finetune_syn_2'  # folder to save trained models
        opt.log_dir = '/home/akeaveny/catkin_ws/src/object-rpe-ak/DenseFusion/experiments/logs/arl/clutter/arl_finetune_syn_2'  # folder to save logs
        output_results = 'check_arl_syn.txt'

        opt.nepoch = 750

        opt.w = 0.05
        opt.refine_margin = 0.0045

        # TODO
        opt.repeat_epoch = 20
        opt.start_epoch = 0
        opt.resume_posenet = 'pose_model_1_0.012397416144377301.pth'
        opt.resume_refinenet = 'pose_refine_model_153_0.004032851301599294.pth'

    elif opt.dataset == 'arl1':
        opt.num_objects = 5  # number of object classes in the dataset
        opt.num_points = 1000  # number of points on the input pointcloud
        opt.dataset_root = '/data/Akeaveny/Datasets/arl_dataset'
        opt.outf = 'trained_models/arl1/clutter/arl_real_2'  # folder to save trained models
        opt.log_dir = '/home/akeaveny/catkin_ws/src/object-rpe-ak/DenseFusion/experiments/logs/arl1/clutter/arl_real_2'  # folder to save logs
        output_results = 'check_arl_syn.txt'

        opt.nepoch = 750

        opt.w = 0.05
        opt.refine_margin = 0.015

        # opt.start_epoch = 120
        # opt.resume_posenet = 'pose_model_current.pth'
        # opt.resume_refinenet = 'pose_refine_model_115_0.008727498716640046.pth'

    elif opt.dataset == 'elevator':
        opt.num_objects = 1  # number of object classes in the dataset
        opt.num_points = 1000  # number of points on the input pointcloud
        opt.dataset_root = '/data/Akeaveny/Datasets/elevator_dataset'
        opt.outf = 'trained_models/elevator/elevator_2'  # folder to save trained models
        opt.log_dir = '/home/akeaveny/catkin_ws/src/object-rpe-ak/DenseFusion/experiments/logs/elevator/elevator_2'  # folder to save logs
        output_results = 'check_arl_syn.txt'

        opt.nepoch = 750

        opt.w = 0.05
        opt.refine_margin = 0.015

        opt.nepoch = 750

        opt.w = 0.05
        opt.refine_margin = 0.015

        # TODO
        opt.repeat_epoch = 40
        # opt.start_epoch = 47
        # opt.resume_posenet = 'pose_model_current.pth'
        # opt.resume_refinenet = 'pose_refine_model_46_0.007581770288279472.pth'

    else:
        print('Unknown dataset')
        return

    estimator = PoseNet(num_points=opt.num_points, num_obj=opt.num_objects)
    estimator.cuda()
    refiner = PoseRefineNet(num_points=opt.num_points, num_obj=opt.num_objects)
    refiner.cuda()

    if opt.resume_posenet != '':
        estimator.load_state_dict(
            torch.load('{0}/{1}'.format(opt.outf, opt.resume_posenet)))

    if opt.resume_refinenet != '':
        refiner.load_state_dict(
            torch.load('{0}/{1}'.format(opt.outf, opt.resume_refinenet)))
        opt.refine_start = False
        opt.decay_start = False
        opt.lr *= opt.lr_rate
        opt.w *= opt.w_rate
        opt.batch_size = int(opt.batch_size / opt.iteration)
        optimizer = optim.Adam(refiner.parameters(), lr=opt.lr)
    else:
        opt.refine_start = False
        opt.decay_start = False
        optimizer = optim.Adam(estimator.parameters(), lr=opt.lr)

    if opt.dataset == 'ycb':
        dataset = PoseDataset_ycb('train', opt.num_points, True,
                                  opt.dataset_root, opt.noise_trans,
                                  opt.refine_start)
    elif opt.dataset == 'linemod':
        dataset = PoseDataset_linemod('train', opt.num_points, True,
                                      opt.dataset_root, opt.noise_trans,
                                      opt.refine_start)
    elif opt.dataset == 'ycb-syn':
        dataset = PoseDataset_ycb_syn('train', opt.num_points, True,
                                      opt.dataset_root, opt.noise_trans,
                                      opt.refine_start)
    elif opt.dataset == 'arl':
        dataset = PoseDataset_arl('train', opt.num_points, True,
                                  opt.dataset_root, opt.noise_trans,
                                  opt.refine_start)
    elif opt.dataset == 'arl1':
        dataset = PoseDataset_arl1('train', opt.num_points, True,
                                   opt.dataset_root, opt.noise_trans,
                                   opt.refine_start)
    elif opt.dataset == 'elevator':
        dataset = PoseDataset_elevator('train', opt.num_points, True,
                                       opt.dataset_root, opt.noise_trans,
                                       opt.refine_start)

    dataloader = torch.utils.data.DataLoader(dataset,
                                             batch_size=1,
                                             shuffle=True,
                                             num_workers=opt.workers)

    if opt.dataset == 'ycb':
        test_dataset = PoseDataset_ycb('test', opt.num_points, False,
                                       opt.dataset_root, 0.0, opt.refine_start)
    elif opt.dataset == 'linemod':
        test_dataset = PoseDataset_linemod('test', opt.num_points, False,
                                           opt.dataset_root, 0.0,
                                           opt.refine_start)
    elif opt.dataset == 'ycb-syn':
        test_dataset = PoseDataset_ycb_syn('test', opt.num_points, True,
                                           opt.dataset_root, 0.0,
                                           opt.refine_start)
    elif opt.dataset == 'arl':
        test_dataset = PoseDataset_arl('test', opt.num_points, True,
                                       opt.dataset_root, 0.0, opt.refine_start)
    elif opt.dataset == 'arl1':
        test_dataset = PoseDataset_arl1('test', opt.num_points, True,
                                        opt.dataset_root, 0.0,
                                        opt.refine_start)
    elif opt.dataset == 'elevator':
        test_dataset = PoseDataset_elevator('test', opt.num_points, True,
                                            opt.dataset_root, 0.0,
                                            opt.refine_start)

    testdataloader = torch.utils.data.DataLoader(test_dataset,
                                                 batch_size=1,
                                                 shuffle=False,
                                                 num_workers=opt.workers)

    opt.sym_list = dataset.get_sym_list()
    opt.num_points_mesh = dataset.get_num_points_mesh()

    print(
        '>>>>>>>>----------Dataset loaded!---------<<<<<<<<\nlength of the training set: {0}\nlength of the testing set: {1}\nnumber of sample points on mesh: {2}\nsymmetry object list: {3}'
        .format(len(dataset), len(test_dataset), opt.num_points_mesh,
                opt.sym_list))

    criterion = Loss(opt.num_points_mesh, opt.sym_list)
    criterion_refine = Loss_refine(opt.num_points_mesh, opt.sym_list)

    best_test = np.Inf

    if opt.start_epoch == 1:
        for log in os.listdir(opt.log_dir):
            os.remove(os.path.join(opt.log_dir, log))
    st_time = time.time()

    ######################
    ######################

    # TODO (ak): set up tensor board
    # if not os.path.exists(opt.log_dir):
    #     os.makedirs(opt.log_dir)
    #
    # writer = SummaryWriter(opt.log_dir)

    ######################
    ######################

    for epoch in range(opt.start_epoch, opt.nepoch):
        logger = setup_logger(
            'epoch%d' % epoch,
            os.path.join(opt.log_dir, 'epoch_%d_log.txt' % epoch))
        logger.info('Train time {0}'.format(
            time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)) +
            ', ' + 'Training started'))
        train_count = 0
        train_dis_avg = 0.0
        if opt.refine_start:
            estimator.eval()
            refiner.train()
        else:
            estimator.train()
        optimizer.zero_grad()

        for rep in range(opt.repeat_epoch):

            ##################
            # train
            ##################

            for i, data in enumerate(dataloader, 0):
                points, choose, img, target, model_points, idx = data

                # TODO: txt file
                # fw = open(test_folder + output_results, 'w')
                # fw.write('Points\n{0}\n\nchoose\n{1}\n\nimg\n{2}\n\ntarget\n{3}\n\nmodel_points\n{4}'.format(points, choose, img, target, model_points))
                # fw.close()

                points, choose, img, target, model_points, idx = Variable(points).cuda(), \
                                                                 Variable(choose).cuda(), \
                                                                 Variable(img).cuda(), \
                                                                 Variable(target).cuda(), \
                                                                 Variable(model_points).cuda(), \
                                                                 Variable(idx).cuda()
                pred_r, pred_t, pred_c, emb = estimator(
                    img, points, choose, idx)
                loss, dis, new_points, new_target = criterion(
                    pred_r, pred_t, pred_c, target, model_points, idx, points,
                    opt.w, opt.refine_start)

                if opt.refine_start:
                    for ite in range(0, opt.iteration):
                        pred_r, pred_t = refiner(new_points, emb, idx)
                        dis, new_points, new_target = criterion_refine(
                            pred_r, pred_t, new_target, model_points, idx,
                            new_points)
                        dis.backward()
                else:
                    loss.backward()

                train_dis_avg += dis.item()
                train_count += 1

                if train_count % opt.batch_size == 0:
                    logger.info(
                        'Train time {} Epoch {} Batch {} Frame {}/{} Avg_dis: {:.2f} [cm]'
                        .format(
                            time.strftime("%Hh %Mm %Ss",
                                          time.gmtime(time.time() - st_time)),
                            epoch, int(train_count / opt.batch_size),
                            train_count, len(dataset.list),
                            train_dis_avg / opt.batch_size * 100))
                    optimizer.step()
                    optimizer.zero_grad()

                    # TODO: tensorboard
                    # if train_count != 0 and train_count % 250 == 0:
                    #     scalar_info = {'loss': loss.item(),
                    #                    'dis': train_dis_avg / opt.batch_size}
                    #     for key, val in scalar_info.items():
                    #         writer.add_scalar(key, val, train_count)

                    train_dis_avg = 0

                if train_count != 0 and train_count % 1000 == 0:
                    if opt.refine_start:
                        torch.save(
                            refiner.state_dict(),
                            '{0}/pose_refine_model_current.pth'.format(
                                opt.outf))
                    else:
                        torch.save(
                            estimator.state_dict(),
                            '{0}/pose_model_current.pth'.format(opt.outf))

                    # TODO: tensorboard
                    # scalar_info = {'loss': loss.item(),
                    #                'dis': dis.item()}
                    # for key, val in scalar_info.items():
                    #     writer.add_scalar(key, val, train_count)

        print(
            '>>>>>>>>----------epoch {0} train finish---------<<<<<<<<'.format(
                epoch))

        logger = setup_logger(
            'epoch%d_test' % epoch,
            os.path.join(opt.log_dir, 'epoch_%d_test_log.txt' % epoch))
        logger.info('Test time {0}'.format(
            time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)) +
            ', ' + 'Testing started'))
        test_dis = 0.0
        test_count = 0
        estimator.eval()
        refiner.eval()

        for j, data in enumerate(testdataloader, 0):
            points, choose, img, target, model_points, idx = data
            points, choose, img, target, model_points, idx = Variable(points).cuda(), \
                                                             Variable(choose).cuda(), \
                                                             Variable(img).cuda(), \
                                                             Variable(target).cuda(), \
                                                             Variable(model_points).cuda(), \
                                                             Variable(idx).cuda()
            pred_r, pred_t, pred_c, emb = estimator(img, points, choose, idx)
            _, dis, new_points, new_target = criterion(pred_r, pred_t, pred_c,
                                                       target, model_points,
                                                       idx, points, opt.w,
                                                       opt.refine_start)

            if opt.refine_start:
                for ite in range(0, opt.iteration):
                    pred_r, pred_t = refiner(new_points, emb, idx)
                    dis, new_points, new_target = criterion_refine(
                        pred_r, pred_t, new_target, model_points, idx,
                        new_points)

            test_dis += dis.item()
            logger.info('Test time {} Test Frame No.{} dis: {} [cm]'.format(
                time.strftime("%Hh %Mm %Ss",
                              time.gmtime(time.time() - st_time)), test_count,
                dis * 100))

            test_count += 1

        test_dis = test_dis / test_count
        logger.info(
            'Test time {} Epoch {} TEST FINISH Avg dis: {} [cm]'.format(
                time.strftime("%Hh %Mm %Ss",
                              time.gmtime(time.time() - st_time)), epoch,
                test_dis * 100))

        # TODO: tensorboard
        # scalar_info = {'test dis': test_dis}
        # for key, val in scalar_info.items():
        #     writer.add_scalar(key, val, train_count)

        if test_dis <= best_test:
            best_test = test_dis
            if opt.refine_start:
                torch.save(
                    refiner.state_dict(),
                    '{0}/pose_refine_model_{1}_{2}.pth'.format(
                        opt.outf, epoch, test_dis))
            else:
                torch.save(
                    estimator.state_dict(),
                    '{0}/pose_model_{1}_{2}.pth'.format(
                        opt.outf, epoch, test_dis))
            print(epoch,
                  '>>>>>>>>----------BEST TEST MODEL SAVED---------<<<<<<<<')

        if best_test < opt.decay_margin and not opt.decay_start:
            opt.decay_start = True
            opt.lr *= opt.lr_rate
            opt.w *= opt.w_rate
            optimizer = optim.Adam(estimator.parameters(), lr=opt.lr)

        if best_test < opt.refine_margin and not opt.refine_start:
            opt.refine_start = True
            opt.batch_size = int(opt.batch_size / opt.iteration)
            optimizer = optim.Adam(refiner.parameters(), lr=opt.lr)

            if opt.dataset == 'ycb':
                dataset = PoseDataset_ycb('train', opt.num_points, True,
                                          opt.dataset_root, opt.noise_trans,
                                          opt.refine_start)
            elif opt.dataset == 'linemod':
                dataset = PoseDataset_linemod('train', opt.num_points, True,
                                              opt.dataset_root,
                                              opt.noise_trans,
                                              opt.refine_start)
            elif opt.dataset == 'ycb-syn':
                dataset = PoseDataset_ycb_syn('train', opt.num_points, True,
                                              opt.dataset_root,
                                              opt.noise_trans,
                                              opt.refine_start)
            elif opt.dataset == 'arl':
                dataset = PoseDataset_arl('train', opt.num_points, True,
                                          opt.dataset_root, opt.noise_trans,
                                          opt.refine_start)
            elif opt.dataset == 'arl1':
                dataset = PoseDataset_arl1('train', opt.num_points, True,
                                           opt.dataset_root, opt.noise_trans,
                                           opt.refine_start)
            elif opt.dataset == 'elevator':
                dataset = PoseDataset_elevator('train', opt.num_points, True,
                                               opt.dataset_root,
                                               opt.noise_trans,
                                               opt.refine_start)

            dataloader = torch.utils.data.DataLoader(dataset,
                                                     batch_size=1,
                                                     shuffle=True,
                                                     num_workers=opt.workers)

            if opt.dataset == 'ycb':
                test_dataset = PoseDataset_ycb('test', opt.num_points, False,
                                               opt.dataset_root, 0.0,
                                               opt.refine_start)
            elif opt.dataset == 'linemod':
                test_dataset = PoseDataset_linemod('test', opt.num_points,
                                                   False, opt.dataset_root,
                                                   0.0, opt.refine_start)
            elif opt.dataset == 'ycb-syn':
                test_dataset = PoseDataset_ycb_syn('test', opt.num_points,
                                                   True, opt.dataset_root, 0.0,
                                                   opt.refine_start)
            elif opt.dataset == 'arl':
                test_dataset = PoseDataset_arl('test', opt.num_points, True,
                                               opt.dataset_root, 0.0,
                                               opt.refine_start)
            elif opt.dataset == 'arl1':
                test_dataset = PoseDataset_arl1('test', opt.num_points, True,
                                                opt.dataset_root, 0.0,
                                                opt.refine_start)
            elif opt.dataset == 'elevator':
                test_dataset = PoseDataset_elevator('test', opt.num_points,
                                                    True, opt.dataset_root,
                                                    0.0, opt.refine_start)

            testdataloader = torch.utils.data.DataLoader(
                test_dataset,
                batch_size=1,
                shuffle=False,
                num_workers=opt.workers)

            opt.sym_list = dataset.get_sym_list()
            opt.num_points_mesh = dataset.get_num_points_mesh()

            print(
                '>>>>>>>>----------Dataset loaded!---------<<<<<<<<\nlength of the training set: {0}\nlength of the testing set: {1}\nnumber of sample points on mesh: {2}\nsymmetry object list: {3}'
                .format(len(dataset), len(test_dataset), opt.num_points_mesh,
                        opt.sym_list))

            criterion = Loss(opt.num_points_mesh, opt.sym_list)
            criterion_refine = Loss_refine(opt.num_points_mesh, opt.sym_list)
Example #4
0
def main():
    opt.manualSeed = random.randint(1, 10000)
    random.seed(opt.manualSeed)
    torch.manual_seed(opt.manualSeed)
    device_cpu = torch.device('cpu')
    if opt.gpu:
        if torch.cuda.is_available():
            device = torch.device('cuda:0')
        else:
            device = torch.device('cpu')
    else:
        device = torch.device('cpu')
    if torch.cuda.is_available():
        torch.cuda.empty_cache()
        torch.backends.cudnn.benchmark = True

    if opt.dataset == 'ycb':
        opt.num_objects = 21  #number of object classes in the dataset
        opt.num_points = 1000  #number of points on the input pointcloud
        opt.outf = 'trained_models/ycb'  #folder to save trained models
        opt.log_dir = 'experiments/logs/ycb'  #folder to save logs
        opt.repeat_epoch = 1  #number of repeat times for one epoch training
    elif opt.dataset == 'linemod':
        opt.num_objects = 10
        opt.num_points = 500
        opt.outf = 'trained_models/linemod'
        opt.log_dir = 'experiments/logs/linemod'
        opt.repeat_epoch = 20
    else:
        print('Unknown dataset')
        return

    # check for the network mode
    if not opt.vertex_reg and opt.vertex_reg_hough:
        assert ValueError('Mode Incorrect')

    if opt.mode == "train":
        if opt.dataset == 'ycb':
            # print("No YCB dataset")
            # return
            dataset = PoseDataset_ycb('train', opt.num_points, True,
                                      opt.dataset_root, opt.noise_trans,
                                      opt.refine_start)
        elif opt.dataset == 'linemod':
            dataset = PoseDataset_linemod('train', opt.num_points, True,
                                          opt.dataset_root, opt.noise_trans,
                                          opt.refine_start, False, True,
                                          opt.vertex_reg, opt.vertex_reg_hough)
        trainloader = torch.utils.data.DataLoader(dataset,
                                                  batch_size=opt.batch_size,
                                                  shuffle=True,
                                                  num_workers=opt.workers)
    # print("dataset cld : " + str(dataset.cld))
    # return

    if opt.mode == "eval":
        if opt.dataset == 'ycb':
            dataset = PoseDataset_ycb('test', opt.num_points, True,
                                      opt.dataset_root, opt.noise_trans,
                                      opt.refine_start)
            # print("No YCB dataset")
            # return
            # test_dataset = PoseDataset_ycb('test', opt.num_points, False, opt.dataset_root,
            #                                0.0, opt.refine_start)
        elif opt.dataset == 'linemod':
            dataset = PoseDataset_linemod('test', opt.num_points, False,
                                          opt.dataset_root, 0.0,
                                          opt.refine_start, False, True,
                                          opt.vertex_reg, opt.vertex_reg_hough)
        testdataloader = torch.utils.data.DataLoader(dataset,
                                                     batch_size=1,
                                                     shuffle=False,
                                                     num_workers=opt.workers)

    # if opt.dataset == 'ycb':
    #     pass
    # else:
    #     ap_data = PoseDataset_linemod('test', opt.num_points, False, opt.dataset_root, 0.0,
    #                                   opt.refine_start, True, True, opt.vertex_reg, opt.vertex_reg_hough)
    # ap_loader = torch.utils.data.DataLoader(ap_data, batch_size=1, shuffle=False, num_workers=opt.workers)
    # dataset = test_dataset

    opt.sym_list = dataset.get_sym_list()
    opt.num_points_mesh = dataset.get_num_points_mesh()
    #     print(opt.sym_list)
    #    print('>>>>>>>>----------Dataset loaded!---------<<<<<<<<\nlength of the training set: {0}\nlength of the testing set: {1}\nnumber of sample points on mesh: {2}\nsymmetry object list: {3}'.format(len(dataset), len(test_dataset), opt.num_points_mesh, opt.sym_list))

    # Network, optimizer and loss
    net = vgg16_convs(None, opt.num_objects, opt.num_objects, opt.scales,
                      opt.threshold_label, opt.vote_threshold, opt.vertex_reg,
                      opt.vertex_reg, opt.vertex_reg_hough)
    #    net = vgg16_convs_comb_seg_center(None, opt.num_objects, opt.num_objects, opt.scales, opt.threshold_label,
    #                                      opt.vote_threshold, opt.vertex_reg, opt.combine_seg_center)

    optimizer = optim.Adam(net.parameters(), lr=opt.lr)

    # weight_class = torch.from_numpy(dataset.weight_clsss).type('torch.FloatTensor').to(device)
    #    criterion = nn.CrossEntropyLoss(weight_class)
    criterion = nn.CrossEntropyLoss()
    #     criterion = nn.BCELoss()
    #     criterion = nn.MSELoss()
    criterion_center = nn.SmoothL1Loss()

    # Load pretrained model
    start_epoch = 0
    if opt.flag_pretrained and not opt.flag_pretrained_vgg:
        # load out model trained before as initialization to continue
        if os.path.isfile(opt.path_pretrained):
            print("=> Loading Checkpoint '{}'".format(opt.path_pretrained))
            pre_trained = torch.load(opt.path_pretrained)
            net_dic = net.state_dict()
            net_dic_new = net_dic
            pretrained_dic = pre_trained['state_dict']
            pretrained_list = list(pretrained_dic.items())
            # print("pretrained list length : " + str(len(pretrained_list)))
            #            net.load_state_dict()
            start_epoch = pre_trained['epoch']
            if opt.num_pretrain_param_load > 0:
                count = 0
                for k, v in net_dic.items():
                    if count >= opt.num_pretrain_param_load:
                        break
                    name_temp, value_pretrained = pretrained_list[count]
                    if opt.gpu:
                        net_dic_new[k] = value_pretrained
                    else:
                        net_dic_new[k] = value_pretrained.cpu()
                    count += 1
                    # print("net dic new k : " + str(net_dic_new[k]))
            print("count : " + str(count))

            net.load_state_dict(net_dic_new)
            """
            optimizer.load_state_dict(pre_trained['optimizer'])
            for state in optimizer.state.values():
                for k, v in state.items():
                    if torch.cuda.is_available:
                        if isinstance(v, torch.Tensor):
                            state[k] = v.cuda()
            """
            print("=> Loaded Checkpoint '{}'".format(opt.path_pretrained))
            print("Start epoch : " + str(start_epoch))
        else:
            assert ValueError("no pretrained_model found at {}".format(
                opt.path_pretrained))

        count = 0
        for param in net.parameters():
            if count >= opt.num_pretrain_param_freeze:
                break
            param.requires_grad = False
            count += 1
    elif not opt.flag_pretrained and opt.flag_pretrained_vgg:
        # load the pretrained weight of VGG16 net
        # 'vgg16': 'https://download.pytorch.org/models/vgg16-397923af.pth'
        pretrained_dic = torch.load('pretrained_model\\vgg16-397923af.pth')
        pretrained_list = list(pretrained_dic.items())
        net_dic = net.state_dict()
        net_dic_new = net_dic
        count = 0
        for k, v in net_dic.items():
            name_temp, value_pretrained = pretrained_list[count]
            net_dic_new[k] = value_pretrained
            count += 1
            if count >= opt.num_pretrain_param_vgg:
                break
        net.load_state_dict(net_dic_new)
        count = 0
        for param in net.parameters():
            param.requires_grad = False
            count += 1
            if count >= opt.num_pretrain_param_vgg:
                break
    elif not opt.flag_pretrained and not opt.flag_pretrained_vgg:
        print('without laod any pretrained model')
    else:
        print(
            'Collision with the flag of load vgg param and laod pretrain model'
        )

    net.to(device)

    if opt.mode == "train":
        loss_his = []
        loss_his = train(trainloader, net, criterion, criterion_center,
                         optimizer, device, device_cpu, start_epoch)

        print('>>>>>>>>----------Training Finished!---------<<<<<<<<')

    if opt.mode == "eval":
        test_loss = 0
        test_loss = test(testdataloader, net, criterion, criterion_center,
                         device, device_cpu)

        print('>>>>>>>>----------AP---------<<<<<<<<')


#     aps = None
#     if opt.train_single_frame:
#         aps = cal_AP(ap_loader, net, criterion, device, opt.num_objects, opt)
#         aps = np.array(aps)
#         print('Final mean AP : {}'.format(np.mean(aps)))

# print('>>>>>>>>----------Save the model weights!---------<<<<<<<<')
# if opt.save_model:
#     # save the trained model
#     save_checkpoint({
#         'epoch': opt.nepoch,
#         'arch': opt.arch,
#         'state_dict': net.state_dict(),
#         'test_loss': test_loss,
#         'aps': "aps",
#         'optimizer' : optimizer.state_dict(),
#     }, False)

# print('>>>>>>>>----------Loss History---------<<<<<<<<')
# np.save('log//loss//loss', np.array(loss_his))
# plt.figure()
# plt.plot(loss_his)
# plt.show()
# <<<<<<< HEAD
#     plt.savefig('/home/ubuntu/EECS442_CourseProject/log/loss/unfreeze_seg_ctr.png')
# =======
#     plt.savefig('log//loss//loss.png')

# >>>>>>> ce96c070c17b981e90464ae0b458ab905b1009db
    print('>>>>>>>>----------The End---------<<<<<<<<')