Example #1
0
import minitorch
import datasets
import time
import matplotlib.pyplot as plt

PTS = 50
DATASET = datasets.Xor(PTS, vis=True)
HIDDEN = 10
RATE = 0.5


def RParam(*shape):
    r = 2 * (minitorch.rand(shape) - 0.5)
    return minitorch.Parameter(r)


class Network(minitorch.Module):
    def __init__(self):
        super().__init__()

        # Submodules
        self.layer1 = Linear(2, HIDDEN)
        self.layer2 = Linear(HIDDEN, HIDDEN)
        self.layer3 = Linear(HIDDEN, 1)

    def forward(self, x):
        # TODO: Implement for Task 2.5.
        out = self.layer1.forward(x).relu()
        out = self.layer2.forward(out).relu()
        return self.layer3.forward(out).sigmoid()
Example #2
0
import torch
import datasets
import matplotlib.pyplot as plt

PTS = 250
DATASET = datasets.Xor(PTS)
HIDDEN = 10
RATE = 0.5


# Model with
class Network(torch.nn.Module):
    def __init__(self):
        super().__init__()

        # Submodules
        self.layer1 = Linear(2, HIDDEN)
        self.layer2 = Linear(HIDDEN, HIDDEN)
        self.layer3 = Linear(HIDDEN, 1)

    def forward(self, x):
        h = self.layer1.forward(x).relu()
        h = self.layer2.forward(h).relu()
        return self.layer3.forward(h).sigmoid()


class Linear(torch.nn.Module):
    def __init__(self, in_size, out_size):
        super().__init__()
        self.weight = torch.nn.Parameter(2 *
                                         (torch.rand(in_size, out_size) - 0.5))