Example #1
0
def make_data_loader(args, no_aug=False, **kwargs):
    
    if args.dataset == 'cifar10':
        mean = [0.4914, 0.4822, 0.4465]
        std = [0.2023, 0.1994, 0.2010]
    elif args.dataset == 'cifar100':
        mean = [0.5071, 0.4867, 0.4408]
        std = [0.2675, 0.2565, 0.2761]
    elif args.dataset == 'miniimagenet':
        mean = [0.4728, 0.4487, 0.4031]
        std = [0.2744, 0.2663 , 0.2806]

    size = 32
    if args.dataset == 'miniimagenet':
        size = 84

    if no_aug:
        transform_train = torchvision.transforms.Compose([
            torchvision.transforms.Resize(size),
            torchvision.transforms.CenterCrop(size),
            torchvision.transforms.ToTensor(),
            torchvision.transforms.Normalize(mean, std),
        ])
    else: #Some transformations to avoid fitting to the noise
        transform_train = torchvision.transforms.Compose([
            torchvision.transforms.RandomCrop(size, padding=4),
            torchvision.transforms.RandomHorizontalFlip(),
            torchvision.transforms.ToTensor(),
            torchvision.transforms.Normalize(mean, std),
        ])
        
    transform_test = torchvision.transforms.Compose([
        torchvision.transforms.Resize(size),
        torchvision.transforms.CenterCrop(size),
        torchvision.transforms.ToTensor(),
        torchvision.transforms.Normalize(mean, std)
    ])

    if args.dataset == "cifar10":
        trainset = datasets.cifar10(transform=transform_train, regim='train')
        testset = datasets.cifar10(transform=transform_test, regim='val')
    elif args.dataset == "cifar100":
        trainset = datasets.cifar100(transform=transform_train, regim='train')
        testset = datasets.cifar100(transform=transform_test, regim='val')
    elif args.dataset == "miniimagenet":
        trainset, testset = datasets.miniimagenet(transform=transform_train, transform_test=transform_test)
    else:
        raise NotImplementedError
    

    train_loader = torch.utils.data.DataLoader(trainset, batch_size=args.batch_size, shuffle=True, **kwargs)    
    test_loader = torch.utils.data.DataLoader(testset, batch_size=args.batch_size, shuffle=False, **kwargs)
        
    return train_loader, test_loader
Example #2
0
def adversarial_attack(args, model, inv_factors, results_path, fig_path):
    print("Loading data")
    if args.data == 'cifar10':
        test_loader = datasets.cifar10(args.torch_data, splits='test')
    elif args.data == 'gtsrb':
        test_loader = datasets.gtsrb(args.data_dir, batch_size=args.batch_size, splits='test')
    if args.data == 'mnist':
        test_loader = datasets.mnist(args.torch_data, splits='test')
    elif args.data == 'tiny':
        test_loader = datasets.imagenet(args.data_dir, img_size=64, batch_size=args.batch_size, splits='test',
                                        tiny=True)
    elif args.data == 'imagenet':
        img_size = 224
        if args.model in ['googlenet', 'inception_v3']:
            img_size = 299
        test_loader = datasets.imagenet(args.data_dir, img_size, args.batch_size, workers=args.workers, splits='test')

    if args.epsilon > 0:
        print(eval_fgsm(model, test_loader, args.epsilon, args.device)[-1])
    else:
        stats_dict = {"eps": [], "acc": [], "ece1": [], "ece2": [], "nll": [], "ent": []}
        bnn_stats_dict = {"eps": [], "acc": [], "ece1": [], "ece2": [], "nll": [], "ent": []}
        steps = np.concatenate([np.linspace(0, 0.2, 11), np.linspace(0.3, 1, 8)])
        for step in steps:
            stats = eval_fgsm(model, test_loader, step, args.device, verbose=False)[-1]
            bnn_stats = eval_fgsm_bnn(model, test_loader, inv_factors, args.estimator, args.samples, step,
                                      device=args.device)[-1]
            for (k1, v1), (k2, v2) in zip(stats.items(), bnn_stats.items()):
                stats_dict[k1].append(v1)
                bnn_stats_dict[k2].append(v2)
            np.savez(results_path + "_fgsm.npz", stats=stats_dict, bnn_stats=bnn_stats_dict)
        print(tabulate.tabulate(stats_dict, headers="keys"))
        print(tabulate.tabulate(bnn_stats_dict, headers="keys"))

        plot.adversarial_results(steps, stats_dict, bnn_stats_dict, fig_path)
Example #3
0
def compute_mean_and_std():
    # dataset = datasets.ssl_data(is_train = True, supervised = True, data_transforms = data_transformations.tensor_transform)
    dataset = datasets.cifar10(
        is_train=True,
        supervised=True,
        data_transforms=data_transformations.tensor_transform)
    loader = torch.utils.data.DataLoader(dataset,
                                         batch_size=64,
                                         shuffle=False,
                                         num_workers=0)

    mean = 0.
    std = 0.

    for batch_idx, (data, _) in enumerate(loader):
        images = torch.tensor(data.to(device))
        batch_samples = images.size(
            0)  # batch size (the last batch can have smaller size!)
        images = images.view(batch_samples, images.size(1), -1)
        mean += images.mean(2).sum(0)
        std += images.std(2).sum(0)

    mean /= len(loader.dataset)
    std /= len(loader.dataset)
    print(mean)
    print(std)
Example #4
0
def main(args):
    tf.logging.set_verbosity(tf.logging.INFO)

    image_size = [args.resolution, args.resolution]
    if args.dataset == "cifar10":
        cifar_prepare, dataset_gen = cifar10(True), cifar10(False)
        train_meta, test_meta = cifar_prepare("train"), cifar_prepare("test")
    else:
        raise NotImplementedError

    params = vars(args)
    tf.logging.info("Training on %d samples, evaluation on %d samples" %
                    (train_meta["length"], test_meta["length"]))
    params["steps_per_epoch"] = train_meta["length"] // args.batch_size
    max_steps = args.num_epochs * params["steps_per_epoch"]
    params["num_label_classes"] = train_meta["num_classes"]

    if args.request_from_nni:
        exporters = [NNIExporter()]
    else:
        exporters = []

    run_config = tf.estimator.RunConfig(
        model_dir=args.log_dir,
        log_step_count_steps=10,
        save_checkpoints_secs=args.evaluation_interval,
        save_summary_steps=10)
    classifier = tf.estimator.Estimator(model_fn=model_fn,
                                        params=params,
                                        config=run_config)
    train_spec = tf.estimator.TrainSpec(input_fn=lambda: dataset_gen(
        "train", image_size, True, args.batch_size),
                                        max_steps=max_steps)
    eval_spec = tf.estimator.EvalSpec(input_fn=lambda: dataset_gen(
        "test", image_size, False, args.batch_size),
                                      throttle_secs=args.evaluation_interval,
                                      exporters=exporters)

    tf.estimator.train_and_evaluate(classifier, train_spec, eval_spec)
Example #5
0
def test(args, model, fig_path=""):
    print("Loading data")
    if args.data == 'cifar10':
        test_loader = datasets.cifar10(args.torch_data, splits='test')
    elif args.data == 'gtsrb':
        test_loader = datasets.gtsrb(args.data_dir, batch_size=args.batch_size, splits='test')
    if args.data == 'mnist':
        test_loader = datasets.mnist(args.torch_data, splits='test')
    elif args.data == 'tiny':
        test_loader = datasets.imagenet(args.data_dir, img_size=64, batch_size=args.batch_size, splits='test',
                                        tiny=True)
    elif args.data == 'imagenet':
        img_size = 224
        if args.model in ['googlenet', 'inception_v3']:
            img_size = 299
        test_loader = datasets.imagenet(args.data_dir, img_size, args.batch_size, workers=args.workers, splits='test')

    predictions, labels = eval_nn(model, test_loader, args.device, args.verbose)

    print("Plotting results")
    plot.reliability_diagram(predictions, labels, path=fig_path + "_reliability.pdf")
Example #6
0
def main():
    args = setup()

    print("Preparing directories")
    os.makedirs(os.path.join(args.root_dir, "factors"), exist_ok=True)
    filename = f"{args.prefix}{args.model}_{args.data}_{args.estimator}{args.suffix}"
    factors_path = os.path.join(args.root_dir, "factors", filename)

    print("Loading model")
    if args.model == 'lenet5':
        model = lenet5.lenet5(pretrained=args.data, device=args.device)
    elif args.model == 'resnet18' and args.data != 'imagenet':
        model = resnet.resnet18(pretrained=os.path.join(
            args.root_dir, 'weights', f"{args.model}_{args.data}.pth"),
                                num_classes=43 if args.data == 'gtsrb' else 10,
                                device=args.device)
    else:
        model_class = getattr(torchvision.models, args.model)
        if args.model in ['googlenet', 'inception_v3']:
            model = model_class(pretrained=True, aux_logits=False)
        else:
            model = model_class(pretrained=True)
    model.to(args.device).train()
    if args.parallel:
        model = torch.nn.parallel.DataParallel(model)

    if args.estimator != 'inf':
        print(f"Loading data")
        if args.data == 'cifar10':
            data = datasets.cifar10(args.torch_data,
                                    args.batch_size,
                                    args.workers,
                                    args.augment,
                                    splits='train')
        elif args.data == 'mnist':
            data = datasets.mnist(args.torch_data,
                                  args.batch_size,
                                  args.workers,
                                  args.augment,
                                  splits='train')
        elif args.data == 'gtsrb':
            data = datasets.gtsrb(args.data_dir,
                                  batch_size=args.batch_size,
                                  workers=args.workers,
                                  splits='train')
        elif args.data == 'tiny':
            img_size = 64
            data = datasets.imagenet(args.data_dir,
                                     img_size,
                                     args.batch_size,
                                     splits='train',
                                     tiny=True)
        elif args.data == 'imagenet':
            img_size = 224
            if args.model in ['googlenet', 'inception_v3']:
                img_size = 299
            data = datasets.imagenet(args.data_dir,
                                     img_size,
                                     args.batch_size,
                                     workers=args.workers,
                                     splits='train')
    torch.backends.cudnn.benchmark = True

    print("Computing factors")
    if args.estimator == 'inf':
        est = compute_inf(args)
    elif args.estimator == 'efb':
        factors = torch.load(factors_path.replace("efb", "kfac") + '.pth')
        est = compute_factors(args, model, data, factors)
    else:
        est = compute_factors(args, model, data)

    print("Saving factors")
    if args.estimator == "inf":
        torch.save(est.state, f"{factors_path}{args.rank}.pth")
    elif args.estimator == "efb":
        torch.save(list(est.state.values()), factors_path + '.pth')
        torch.save(list(est.diags.values()),
                   factors_path.replace("efb", "diag") + '.pth')
    else:
        torch.save(list(est.state.values()), factors_path + '.pth')
Example #7
0
    preprocesses_dataset = lambda dataset: dataset  #just a dummy function
elif dataset == 'norb_random':
    print "Using NORB dataset, size = 96"
    train_x, test_x = norb_random()
    print train_x.shape
    print test_x.shape
    preprocesses_dataset = lambda dataset: dataset  #just a dummy function
elif dataset == 'ocr_letter':
    print "Using ocr_letter dataset"
    train_x, valid_x, test_x = ocr_letter()
    preprocesses_dataset = lambda dataset: dataset  #just a dummy function

elif dataset == 'cifar10':
    print "Using CIFAR10 dataset"
    train_x, train_t, test_x, test_t = cifar10(num_val=None,
                                               normalized=True,
                                               centered=False)
    preprocesses_dataset = lambda dataset: dataset  #just a dummy function
    train_x = train_x.reshape((-1, num_features))
    test_x = test_x.reshape((-1, num_features))
else:
    print 'Wrong dataset', dataset
    exit()

if mode == 'train_full':
    if dataset in ['sample', 'fixed', 'caltech', 'ocr_letter']:
        train_x = np.concatenate([train_x, valid_x])
elif mode == 'valid':
    assert dataset in ['sample', 'fixed', 'ocr_letter', 'caltech']
    valid_x = valid_x.astype(np.float32)
    sh_x_valid = theano.shared(preprocesses_dataset(valid_x), borrow=True)
Example #8
0
def main(argv=None):

    ## Create the directory for training model
    if gfile.Exists(TRAIN_MODEL_DIR):
        gfile.DeleteRecursively(TRAIN_MODEL_DIR)
    gfile.MakeDirs(TRAIN_MODEL_DIR)

    # Using logging to output and record everything
    # set up logging to file
    util.set_logging(os.path.join(TRAIN_MODEL_DIR, 'myapp.log'))

    # Write down all the FLAGS
    logging.info('FLAG information')
    for key, value in tf.app.flags.FLAGS.__flags.iteritems():
        logging.info( 'FLAG(%s) : %s'%(key, str(value)))


    # Select the dataset
    if FLAGS.dataset == 'cifar10':
        ds = cifar10()
    elif FLAGS.dataset == 'cifar100':
        ds = cifar100()
    else:
        raise ValueError('Wrong dataset name. Check FLAGS.dataset')

    # Download the dataset
    ds.maybe_download()

    # Read data
    train_data, train_labels = ds.read_data(True)

    TRAIN_SIZE = train_labels.shape[0]
    logging.info('Training Size = %d', TRAIN_SIZE)


    # This is where training samples and labels are fed to the graph.
    # These placeholder nodes will be fed a batch of training data at each
    # training step using the {feed_dict} argument to the Run() call below.
    # This part depends on the Dataset
    train_data_node = tf.placeholder(
        tf.float32,
        shape=(FLAGS.batch_size, ds.image_size(), ds.image_size(), ds.num_channel()), name='data_node')
    train_labels_node = tf.placeholder(tf.float32,
                                     shape=(FLAGS.batch_size, ds.num_label()), name='label_node')
    tf.image_summary('images', train_data_node, max_images=FLAGS.batch_size)

    # Training Model Architecture
    # Select the network
    if FLAGS.network == 'vgg16':
        network = vgg16()
    elif FLAGS.network == 'snn30k':
        network = snn30k()
    elif FLAGS.network == 'snn30k_wo_norm':
        network = snn30k_wo_norm()
    else:
        raise ValueError('Wrong dataset name. Check FLAGS.network')




    network_dict= network.model2(data=train_data_node, num_label=ds.num_label() , d1=FLAGS.d1, d2=FLAGS.d2, pair=FLAGS.pair, train=True)
    logits = network_dict['softmax_linear']
    softmax = tf.nn.softmax(logits)
    tf.histogram_summary('logits', logits)
    tf.histogram_summary('softmax',softmax)


    # Define Objective Function
    cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(
        logits, train_labels_node), name='cross_entropy')
    tf.add_to_collection('losses', cross_entropy )
    loss = tf.add_n(tf.get_collection('losses'), name='total_loss')
    tf.add_to_collection('show', cross_entropy)
    tf.add_to_collection('show', loss)
    tf.scalar_summary('loss/total_loss', loss)
    tf.scalar_summary('loss/entropy', cross_entropy)

    # Optimizer: set up a variable that's incremented once per batch and
    # controls the learning rate decay.
    batch = tf.Variable(0)
    # Decay once per epoch, using an exponential schedule starting at 0.01.
    learning_rate = tf.train.exponential_decay(
        FLAGS.learning_rate,                # Base learning rate.
        batch * FLAGS.batch_size ,          # Current index into the dataset.
        TRAIN_SIZE * FLAGS.decay_step,      # Decay step.
        FLAGS.decay_rate,                   # Decay rate.
        staircase=True,
        name='learning_rate'
        )
    #learning_rate = tf.Variable(FLAGS.learning_rate, name='learning_rate')

    tf.scalar_summary("learning_rate", learning_rate)
    tf.add_to_collection('show', learning_rate)
    # Use simple momentum for the optimization.
    optimizer = tf.train.MomentumOptimizer(learning_rate, FLAGS.momentum)
#    optimizer = tf.train.AdamOptimizer(learning_rate)

    # Compute the gradients for a list of variables.
    grads_and_vars = optimizer.compute_gradients(loss, var_list=tf.all_variables())

    # Let Batch normalization variables have higher learning rate
    clipped_grads_and_vars = []
    """
    for gv in grads_and_vars:
        if gv[0] is not None:
            if 'bn_weights' in gv[1].name:
                clipped_grads_and_vars.append([tf.mul(gv[0], tf.constant([1.00001]) ), gv[1]])
            elif 'bn_biases' in gv[1].name:
                clipped_grads_and_vars.append([tf.mul(gv[0], tf.constant([1.00001]) ), gv[1]])
            else:
                clipped_grads_and_vars.append([gv[0] , gv[1]])


    train_op = optimizer.apply_gradients(clipped_grads_and_vars, global_step=batch)
    """
    train_op = optimizer.apply_gradients(grads_and_vars, global_step=batch)

    # Build the summary operation based on the TF collection of Summaries.
    summary_op = tf.merge_all_summaries()

    train_loss=[]
    train_error= []

    # Create a local session to run this computation.
    with tf.Session() as s:
        # Create a saver to store all the variables later
        saver = tf.train.Saver(tf.all_variables())
        # Run all the initializers to prepare the trainable parameters.
        tf.initialize_all_variables().run()

        summary_writer = tf.train.SummaryWriter(TRAIN_MODEL_DIR,
                                            graph_def=s.graph_def)


        offset_old = 0
        logging.info('Initialized!')
        ret = []


        # Loop through training steps.
        num_steps = FLAGS.num_epochs * TRAIN_SIZE // FLAGS.batch_size
        session_start_time = time.time()
        for step in xrange(FLAGS.num_epochs * TRAIN_SIZE // FLAGS.batch_size):
            # Compute the offset of the current minibatch in the data.
            # Note that we could use better randomization across epochs.
            offset = (step * FLAGS.batch_size) % (TRAIN_SIZE - FLAGS.batch_size)
            batch_data = train_data[offset:(offset + FLAGS.batch_size), :, :, :]
            batch_labels = train_labels[offset:(offset + FLAGS.batch_size)]
            # This dictionary maps the batch data (as a np array) to the
            # node in the graph is should be fed to.
            feed_dict = {train_data_node: batch_data,
                   train_labels_node: batch_labels}
            start_time = time.time()
            # Run the graph and fetch some of the nodes.
            # Remind : (train_op) is the most parameter here. Without it, Tensorflow will not do the backpropogation.
            ret.append( s.run(
                tf.get_collection('show')+[logits, train_op],
                feed_dict=feed_dict) )
            duration = time.time() - start_time

            train_error.append( util.error_rate(ret[-1][-2], batch_labels ))

            if step % FLAGS.iter_print_train_info == (FLAGS.iter_print_train_info-1):
                # Print the training Information
                logging.info('Epoch %.2f, Step %d' % ((float(step) * FLAGS.batch_size / TRAIN_SIZE), step))

                # Print the time information
                sec_per_batch = float(duration)
                remaining_sec  = int(float((time.time() - session_start_time)/step) * float(num_steps - step))
                remaining_time = str(datetime.timedelta(seconds=remaining_sec))
                logging.info('%.3f sec/batch, remaining time = %s' %(sec_per_batch, remaining_time))

                ret = np.array(ret)
                for idx, var in enumerate(tf.get_collection('show')):
                    logging.info('Average (%s): %f' % (var.name, np.mean(ret[:, idx])) )

                logging.info('Average Train error: %.2f%%' % np.mean(train_error))

                train_error = []
                ret = []
                print('\n')
                sys.stdout.flush()

            if step % 100==99:
                # Save the summary information
                logging.info('Save the summary information')
                summary_str = s.run(summary_op, feed_dict)
                summary_writer.add_summary(summary_str, step)

            # Per Epoch
            if(offset < offset_old ):
                cur_epoch =np.round((float(step) * FLAGS.batch_size / TRAIN_SIZE))
                cur_epoch = int(cur_epoch)
                logging.info('Epoch %d' % cur_epoch)

                # Randomize Data for Batch normalization
                logging.info('Reorder data order for Batch Normalization')
                rand_idx = np.random.permutation(len(train_labels))
                train_data   = train_data[rand_idx, :, :, :]
                train_labels = train_labels[rand_idx, :]

                # Horizontal mirroring
                logging.info('Randomly horizontal flip the Images')
                mir_idx  = np.random.randint(2, size= len(train_labels))
                mir_idx = np.nonzero(mir_idx > 0 )[0]
                for i in range(ds.num_channel()):
                    train_data[mir_idx, :, :, i ] = train_data[mir_idx, :, ::-1, i]

                if((cur_epoch % 10) == 9):
                    # Save Model
                    checkpoint_path = os.path.join(TRAIN_MODEL_DIR, 'model.ckpt')
                    logging.info('Save the model : %s'%(checkpoint_path))
                    saver.save(s, checkpoint_path, global_step=step)

                sys.stdout.flush()

            offset_old = offset

        # Save the last model
        logging.info('Save the model : %s'%(checkpoint_path))
        saver.save(s, checkpoint_path, global_step=step)
Example #9
0
def out_of_domain(args, model, inv_factors, results_path="", fig_path=""):
    """Evaluates the model on in- and out-of-domain data.

    Each dataset has its own out-of-domain dataset which is loaded automatically alongside the in-domain dataset
    specified in `args.data`. For each image (batch) in the in- and out-of-domain data a forward pass through the
    provided `model` is performed and the predictions are stored under `results_path`. This is repeated for the Bayesian
    variant of the model (Laplace approximation).

    Parameters
    ----------
    args : Todo: Check type
        The arguments provided to the script on execution.
    model : torch.nn.Module Todo: Verify
        A `torchvision` or custom neural network (a `torch.nn.Module` or `torch.nn.Sequential` instance)
    inv_factors : list
        A list KFAC factors, Eigenvectors of KFAC factors or diagonal terms. Todo: INF
    results_path : string, optional
        The path where results (in- and out-of-domain predictions) should be stored. Results are not stored if
        argument `args.no_results` is provided.
    fig_path : string, optional
        The path where figures should be stored. Figures are only generated if argument `args.plot` is provided.
    """
    print("Loading data")
    if args.data == 'cifar10':
        in_data = datasets.cifar10(args.torch_data, splits='test')
        out_data = datasets.svhn(args.torch_data, splits='test')
    elif args.data == 'mnist':
        in_data = datasets.mnist(args.torch_data, splits='test')
        out_data = datasets.kmnist(args.torch_data, splits='test')
    elif args.data == 'gtsrb':
        in_data = datasets.gtsrb(args.data_dir, batch_size=args.batch_size, splits='test')
        out_data = datasets.cifar10(args.torch_data, splits='test')
    elif args.data == 'tiny':
        in_data = datasets.imagenet(args.data_dir, img_size=64, batch_size=args.batch_size, splits='test', tiny=True,
                                    use_cache=True)
        out_data = datasets.art(args.data_dir, img_size=64, batch_size=args.batch_size, use_cache=True)
    elif args.data == 'imagenet':
        img_size = 224
        if args.model in ['googlenet', 'inception_v3']:
            img_size = 299
        in_data = datasets.imagenet(args.data_dir, img_size, args.batch_size, workers=args.workers, splits='test',
                                    use_cache=True)
        out_data = datasets.art(args.data_dir, img_size, args.batch_size, workers=args.workers, use_cache=True)

    # Compute NN and BNN predictions on validation set of training data
    predictions, bnn_predictions, labels, stats = eval_nn_and_bnn(model, in_data, inv_factors, args.estimator,
                                                                  args.samples, args.stats, args.device, verbose=True)

    # Compute NN and BNN predictions on out-of-distribution data
    ood_predictions, bnn_ood_predictions, _, _ = eval_nn_and_bnn(model, out_data, inv_factors, args.estimator,
                                                                 args.samples, False, args.device, verbose=True)

    if not args.no_results:
        print("Saving results")
        np.savez_compressed(results_path,
                            stats=stats,
                            labels=labels,
                            predictions=predictions,
                            bnn_predictions=bnn_predictions,
                            ood_predictions=ood_predictions,
                            bnn_ood_predictions=bnn_ood_predictions)

    if args.plot:
        print("Plotting results")
        fig, ax = plt.subplots(figsize=(12, 7), tight_layout=True)
        plot.inv_ecdf_vs_pred_entropy(predictions, color='dodgerblue', linestyle='--', axis=ax)
        plot.inv_ecdf_vs_pred_entropy(ood_predictions, color='crimson', linestyle='--', axis=ax)
        plot.inv_ecdf_vs_pred_entropy(bnn_predictions, color='dodgerblue', axis=ax)
        plot.inv_ecdf_vs_pred_entropy(bnn_ood_predictions, color='crimson', axis=ax)
        ax.legend([f"NN {args.data.upper()} | Acc.: {accuracy(predictions, labels):.2f}%",
                   f"NN OOD",
                   f"BNN {args.data.upper()} | Acc.: {accuracy(bnn_predictions, labels):.2f}%",
                   f"BNN OOD"], fontsize=16, frameon=False)
        plt.savefig(fig_path + "_ecdf.pdf", forma='pdf', dpi=1200)

        plot.reliability_diagram(predictions, labels, path=fig_path + "_reliability.pdf")
        plot.reliability_diagram(bnn_predictions, labels, path=fig_path + "_bnn_reliability.pdf")

        plot.entropy_hist(predictions, ood_predictions, path=fig_path + "_entropy.pdf")
        plot.entropy_hist(bnn_predictions, bnn_ood_predictions, path=fig_path + "_bnn_entropy.pdf")
Example #10
0
def main():
    args = setup()

    print("Preparing directories")
    filename = f"{args.prefix}{args.model}_{args.data}_{args.estimator}{args.suffix}"
    factors_path = os.path.join(args.root_dir, "factors", filename)
    weights_path = os.path.join(args.root_dir, "weights",
                                f"{args.model}_{args.data}.pth")
    if args.exp_id == -1:
        if not args.no_results:
            os.makedirs(os.path.join(args.results_dir, args.model, "data",
                                     args.estimator, args.optimizer),
                        exist_ok=True)
        if args.plot:
            os.makedirs(os.path.join(args.results_dir, args.model, "figures",
                                     args.estimator, args.optimizer),
                        exist_ok=True)
        results_path = os.path.join(args.results_dir, args.model, "data",
                                    args.estimator, args.optimizer, filename)
    else:
        if not args.no_results:
            os.makedirs(os.path.join(args.results_dir, args.model, "data",
                                     args.estimator, args.optimizer,
                                     args.exp_id),
                        exist_ok=True)
        if args.plot:
            os.makedirs(os.path.join(args.results_dir, args.model, "figures",
                                     args.estimator, args.optimizer,
                                     args.exp_id),
                        exist_ok=True)
        results_path = os.path.join(args.results_dir, args.model, "data",
                                    args.estimator, args.optimizer,
                                    args.exp_id, filename)

    print("Loading model")
    if args.model == 'lenet5':
        model = lenet5(pretrained=args.data, device=args.device)
    elif args.model == 'resnet18' and args.data != 'imagenet':
        model = resnet18(pretrained=weights_path,
                         num_classes=43 if args.data == 'gtsrb' else 10,
                         device=args.device)
    else:
        model_class = getattr(torchvision.models, args.model)
        if args.model in ['googlenet', 'inception_v3']:
            model = model_class(pretrained=True, aux_logits=False)
        else:
            model = model_class(pretrained=True)
    model.to(args.device).eval()
    if args.parallel:
        model = torch.nn.parallel.DataParallel(model)

    print("Loading data")
    if args.data == 'mnist':
        val_loader = datasets.mnist(args.torch_data, splits='val')
    elif args.data == 'cifar10':
        val_loader = datasets.cifar10(args.torch_data, splits='val')
    elif args.data == 'gtsrb':
        val_loader = datasets.gtsrb(args.data_dir,
                                    batch_size=args.batch_size,
                                    splits='val')
    elif args.data == 'imagenet':
        img_size = 224
        if args.model in ['googlenet', 'inception_v3']:
            img_size = 299
        val_loader = datasets.imagenet(args.data_dir,
                                       img_size,
                                       args.batch_size,
                                       args.workers,
                                       splits='val',
                                       use_cache=True,
                                       pre_cache=True)

    print("Loading factors")
    if args.estimator in ["diag", "kfac"]:
        factors = torch.load(factors_path + '.pth')
    elif args.estimator == 'efb':
        kfac_factors = torch.load(factors_path.replace("efb", "kfac") + '.pth')
        lambdas = torch.load(factors_path + '.pth')

        factors = list()
        eigvecs = get_eigenvectors(kfac_factors)

        for eigvec, lambda_ in zip(eigvecs, lambdas):
            factors.append((eigvec[0], eigvec[1], lambda_))
    elif args.estimator == 'inf':
        factors = torch.load(f"{factors_path}{args.rank}.pth")
    torch.backends.cudnn.benchmark = True

    norm_min = -10
    norm_max = 10
    scale_min = -10
    scale_max = 10
    if args.boundaries:
        x0 = list()
        boundaries = [[norm_min, scale_min], [norm_max, scale_max],
                      [norm_min, scale_max], [norm_max, scale_min],
                      [norm_min / 2., scale_min], [norm_max / 2., scale_max],
                      [norm_min, scale_max / 2.], [norm_max, scale_min / 2.],
                      [norm_min / 2., scale_min / 2.],
                      [norm_max / 2., scale_max / 2.],
                      [norm_min / 2., scale_max / 2.],
                      [norm_max / 2., scale_min / 2.]]
        for b in boundaries:
            tmp = list()
            for _ in range(3 if args.layer else 1):
                tmp.extend(b)
            x0.append(tmp)
    else:
        x0 = None
    f_norms = np.array([factor.norm().cpu().numpy() for factor in factors])

    space = list()
    for i in range(3 if args.layer else 1):
        space.append(
            skopt.space.Real(norm_min,
                             norm_max,
                             name=f"norm{i}",
                             prior='uniform'))
        space.append(
            skopt.space.Real(scale_min,
                             scale_max,
                             name=f"scale{i}",
                             prior='uniform'))

    stats = {
        "norms": [],
        "scales": [],
        "acc": [],
        "ece": [],
        "nll": [],
        "ent": [],
        "cost": []
    }

    @skopt.utils.use_named_args(dimensions=space)
    def objective(**params):
        norms = list()
        scales = list()
        for f in f_norms:
            if args.layer:
                # Closest to max
                if abs(f_norms.max() - f) < abs(f_norms.min() - f) and abs(
                        f_norms.max() - f) < abs(f_norms.mean() - f):
                    norms.append(10**params['norm0'])
                    scales.append(10**params['scale0'])
                # Closest to min
                elif abs(f_norms.min() - f) < abs(f_norms.max() - f) and abs(
                        f_norms.min() - f) < abs(f_norms.mean() - f):
                    norms.append(10**params['norm1'])
                    scales.append(10**params['scale1'])
                # Closest to mean
                else:
                    norms.append(10**params['norm2'])
                    scales.append(10**params['scale2'])
            else:
                norms.append(10**params['norm0'])
                scales.append(10**params['scale0'])
        if args.layer:
            print(
                tabulate.tabulate(
                    {
                        'Layer': np.arange(len(factors)),
                        'F-Norm:': f_norms,
                        'Norms': norms,
                        'Scales': scales
                    },
                    headers='keys',
                    numalign='right'))
        else:
            print("Norm:", norms[0], "Scale:", scales[0])
        try:
            inv_factors = invert_factors(factors, norms,
                                         args.pre_scale * scales,
                                         args.estimator)
        except (RuntimeError, np.linalg.LinAlgError):
            print(f"Error: Singular matrix")
            return 200

        predictions, labels, _ = eval_bnn(model,
                                          val_loader,
                                          inv_factors,
                                          args.estimator,
                                          args.samples,
                                          stats=False,
                                          device=args.device,
                                          verbose=False)

        err = 100 - accuracy(predictions, labels)
        ece = 100 * expected_calibration_error(predictions, labels)[0]
        nll = negative_log_likelihood(predictions, labels)
        ent = predictive_entropy(predictions, mean=True)
        stats["norms"].append(norms)
        stats["scales"].append(scales)
        stats["acc"].append(100 - err)
        stats["ece"].append(ece)
        stats["nll"].append(nll)
        stats["ent"].append(ent)
        stats["cost"].append(err + ece)
        print(
            f"Err.: {err:.2f}% | ECE: {ece:.2f}% | NLL: {nll:.3f} | Ent.: {ent:.3f}"
        )

        return err + ece

    with warnings.catch_warnings():
        warnings.filterwarnings("ignore", category=FutureWarning)

        if args.optimizer == "gbrt":
            res = skopt.gbrt_minimize(func=objective,
                                      dimensions=space,
                                      n_calls=args.calls,
                                      x0=x0,
                                      verbose=True,
                                      n_jobs=args.workers,
                                      n_random_starts=0 if x0 else 10,
                                      acq_func='EI')

        # EI (neg. expected improvement)
        # LCB (lower confidence bound)
        # PI (neg. prob. of improvement): Usually favours exploitation over exploration
        # gp_hedge (choose probabilistically between all)
        if args.optimizer == "gp":
            res = skopt.gp_minimize(func=objective,
                                    dimensions=space,
                                    n_calls=args.calls,
                                    x0=x0,
                                    verbose=True,
                                    n_jobs=args.workers,
                                    n_random_starts=0 if x0 else 1,
                                    acq_func='gp_hedge')

        # acq_func: EI (neg. expected improvement), LCB (lower confidence bound), PI (neg. prob. of improvement)
        # xi: how much improvement one wants over the previous best values.
        # kappa: Importance of variance of predicted values. High: exploration > exploitation
        # base_estimator: RF (random forest), ET (extra trees)
        elif args.optimizer == "forest":
            res = skopt.forest_minimize(func=objective,
                                        dimensions=space,
                                        n_calls=args.calls,
                                        x0=x0,
                                        verbose=True,
                                        n_jobs=args.workers,
                                        n_random_starts=0 if x0 else 1,
                                        acq_func='EI')

        elif args.optimizer == "random":
            res = skopt.dummy_minimize(func=objective,
                                       dimensions=space,
                                       n_calls=args.calls,
                                       x0=x0,
                                       verbose=True)

        elif args.optimizer == "grid":
            space = [
                np.arange(norm_min, norm_max + 1, 10),
                np.arange(scale_min, scale_max + 1, 10)
            ]
            res = grid(func=objective, dimensions=space)

        print(f"Minimal cost of {min(stats['cost'])} found at:")
        if args.layer:
            print(
                tabulate.tabulate(
                    {
                        'Layer': np.arange(len(factors)),
                        'F-Norm:': f_norms,
                        'Norms': stats['norms'][np.argmin(stats['cost'])],
                        'Scales': stats['scales'][np.argmin(stats['cost'])]
                    },
                    headers='keys',
                    numalign='right'))
        else:
            print("Norm:", stats['norms'][np.argmin(stats['cost'])][0],
                  "Scale:", stats['scales'][np.argmin(stats['cost'])][0])

    if not args.no_results:
        print("Saving results")
        del res.specs['args']['func']
        np.save(
            results_path +
            f"_best_params{'_layer.npy' if args.layer else '.npy'}", [
                stats['norms'][np.argmin(stats['cost'])],
                stats['scales'][np.argmin(stats['cost'])]
            ])
        np.save(
            results_path +
            f"_hyperopt_stats{'_layer.npy' if args.layer else '.npy'}", stats)
        skopt.dump(
            res, results_path +
            f"_hyperopt_dump{'_layer.pkl' if args.layer else '.pkl'}")

    if args.plot:
        print("Plotting results")
        hyperparameters(args)
Example #11
0
elif dataset == 'norb_96':
    print "Using NORB dataset, size = 96"
    x, y = load_numpy_subclasses(size=96, normalize=True)
    x = x.T
    train_x = x[:24300]
    test_x = x[24300*2:24300*3] # only for debug, compare generation only
    del y
    preprocesses_dataset = lambda dataset: dataset #just a dummy function
elif dataset is 'ocr_letter':
    print "Using ocr_letter dataset"
    train_x, valid_x, test_x = ocr_letter()
    preprocesses_dataset = lambda dataset: dataset #just a dummy function

elif dataset == 'cifar10':
    print "Using CIFAR10 dataset"
    train_x, train_t, test_x, test_t = cifar10(num_val=None, normalized=True, centered=False)
    preprocesses_dataset = lambda dataset: dataset #just a dummy function
    train_x = train_x.reshape((-1,num_features))
    test_x = test_x.reshape((-1,num_features))
else:
    print 'Wrong dataset', dataset
    exit()

if dataset in ['sample', 'fixed', 'caltech', 'ocr_letter']:
    train_x = np.concatenate([train_x,valid_x])
if dataset == 'sample':
    train_t = np.concatenate([train_t,valid_t])

train_x = train_x.astype(theano.config.floatX)
test_x = test_x.astype(theano.config.floatX)
Example #12
0
from logger import struct, Logger
from train import train, acc_metric, nll_metric
from models import vgg

H = struct(
    batch_size=128,
    val_batch_size=100,
    epochs=10,
    lr=0.1,
    momentum=0.9,
)
S = struct(epoch=1, bn=1)

log = Logger('cifar10_standard', H, S, overwrite=True, metric_show_freq=100)

tn_loader, val_loader = loader(cifar10(), H.batch_size, H.val_batch_size)


class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.features = vgg('vgg11')
        self.classifier = nn.Linear(512, 10)

    def forward(self, x):
        out = self.features(x)
        out = out.view(out.size(0), -1)
        out = self.classifier(out)
        out = F.log_softmax(out)
        return out
Example #13
0
def main(argv):
    patch_conv2d_4_size()

    ## Parsing arguments
    parser = argparse.ArgumentParser(prog="main.py")
    parser.add_argument("--model", required=True, help="model name")
    parser.add_argument("--gpu",
                        default="0",
                        help="gpu ids, seperate by comma")
    parser.add_argument(
        "--resume",
        "-r",
        help="resume from checkpoint,specify folder containing the ckpt.t7")
    parser.add_argument("--dataset",
                        default="cifar",
                        type=str,
                        help="The Dataset")
    parser.add_argument("--no-cuda",
                        action="store_true",
                        default=False,
                        help="do not use gpu")
    parser.add_argument("--seed", default=None, help="random seed", type=int)
    parser.add_argument("--path", default=None, help="imagenet dataset path")
    args = parser.parse_args(argv)

    if args.seed is not None:
        if torch.cuda.is_available():
            torch.cuda.manual_seed(args.seed)
        np.random.seed(args.seed)
        torch.manual_seed(args.seed)
        random.seed(args.seed)

    device = "cuda" if torch.cuda.is_available(
    ) and not args.no_cuda else "cpu"

    if device == "cuda":
        logging.info("Using GPU! Available gpu count: {}".format(
            torch.cuda.device_count()))
    else:
        logging.info("\033[1;3mWARNING: Using CPU!\033[0m")

    ## Dataset
    if args.dataset == "cifar":
        trainloader, validloader, ori_trainloader, testloader, _ = datasets.cifar10(
            train_bs=128,
            test_bs=100,
            train_transform=None,
            test_transform=None,
            train_val_split_ratio=0.9)
    elif args.dataset == "imagenet":
        trainloader, validloader, ori_trainloader, testloader, _ = datasets.imagenet(
            128, 32, None, None, train_val_split_ratio=None, path=args.path)

    ## Build model
    logging.info("==> Building model..")
    gpus = [int(d) for d in args.gpu.split(",")]
    torch.cuda.set_device(gpus[0])
    net = get_model(args.model)()
    net = net.to(device)

    if device == "cuda":
        cudnn.benchmark = True
        if len(gpus) > 1:
            p_net = torch.nn.DataParallel(net, gpus)
        else:
            p_net = net

    tester = Tester(net,
                    p_net, [trainloader, validloader, ori_trainloader],
                    testloader,
                    cfg={"dataset": args.dataset},
                    log=print)
    tester.init(device=device, resume=args.resume, pretrain=True)
    # tester.test(save=False)
    keep_ratios, sparsity = tester.check_sparsity()
    print("The final Sparsity is {:.3}, Keep Ratios Are:\n{}".format(
        sparsity, keep_ratios))
    for pc in tester.comp_primals.pc_list:
        print(pc.comp_names, pc.get_keep_ratio())
    _, keep_ratios = tester.get_true_flops()
Example #14
0
def main():
	# Batch size
	batch_size = 64
	epochs = 5

	seed = 18

	data = 'ar_faces'

	# Since model was pretrained on ImageNet, normalize using ImageNet statistics
	imagenet_mean = (0.485,0.456,0.406)
	imagenet_std = (0.229,0.224,0.225)

	# Means and standard deviations for other datasets
	cifar10_mean = (0.4914,0.4822,0.4465)
	cifar10_std = (0.247,0.243,0.261)

	if data=='eth80':
		val_ratio = 0.1
		test_ratio = 0.1

		train_set, val_set, test_set = data_split(eth80(), seed=seed, val_ratio=val_ratio, test_ratio=test_ratio)

		train_xfm = transforms.Compose([
			transforms.Resize((224,224)),
			transforms.RandomHorizontalFlip(),
			transforms.ToTensor(),
			transforms.Normalize(imagenet_mean, imagenet_std)
			])

		val_xfm = transforms.Compose([
			transforms.Resize((224, 224)),
			transforms.ToTensor(),
			transforms.Normalize(imagenet_mean, imagenet_std)
			])

		train_set.dataset.tranform = train_xfm
		val_set.dataset.transform = val_xfm
		test_set.dataset.transform = val_xfm

	elif data == 'ar_faces':
		val_ratio = 0.1
		test_ratio = 0.1

		xfm = transforms.Compose([
			transforms.Resize((224, 162)),
			transforms.Pad((31, 0)),
			transforms.ToTensor(),
			transforms.Normalize(imagenet_mean, imagenet_std)
			])

		train_set, val_set, test_set = data_split(ar_faces(), seed=seed, val_ratio=val_ratio, test_ratio=test_ratio)

		train_set.dataset.transform = xfm
		val_set.dataset.transform = xfm
		test_set.dataset.transform = xfm

	elif data == 'cifar10':
		val_ratio = 0.2
		test_ratio = 0.2

		train_xfm = transforms.Compose([
			# transforms.Resize((224,224)),
			transforms.RandomResizedCrop(224),
			transforms.RandomHorizontalFlip(),
			transforms.ToTensor(),
			transforms.Normalize(imagenet_mean, imagenet_std)
			])

		val_xfm = transforms.Compose([
			transforms.Resize((224,224)),
			transforms.ToTensor(),
			transforms.Normalize(imagenet_mean, imagenet_std)
			])

		train_set, val_set, test_set = data_split(cifar10(), seed=seed, val_ratio=val_ratio, test_ratio=test_ratio)

		train_set.dataset.tranform = train_xfm
		val_set.dataset.transform = val_xfm
		test_set.dataset.transform = val_xfm

	# Number of classes
	num_classes = len(train_set.dataset.classes)

	# Loaders for each dataset
	train_loader = DataLoader(train_set, batch_size=batch_size, shuffle=True)
	val_loader = DataLoader(val_set, batch_size=batch_size)
	test_loader = DataLoader(test_set, batch_size=batch_size)

	# # Get a batch to visualize
	# imgs, labels = next(iter(train_loader))

	# # Make into grid
	# imgs_grid = torchvision.utils.make_grid(imgs).permute(1,2,0).numpy()

	# # Undo normalize
	# mean = np.array(imagenet_mean)[None,None,:]
	# std = np.array(imagenet_std)[None,None,:]
	# imgs_grid = imgs_grid*std+mean

	# # Print labels and filepaths
	# print(labels)
	# # print([test_loader.dataset.dataset.imgs[i][0] for i in test_loader.dataset.indices[0:batch_size]])

	# plt.imshow(imgs_grid)
	# plt.show()
	# sys.exit()

	# Load pretrained model
	model = models.squeezenet1_1(pretrained=True)

	# Reshape classification layer to have 'num_classes' outputs
	model.classifier[1] = nn.Conv2d(512, num_classes, kernel_size=(1,1), stride=(1,1))
	model.num_classes = num_classes

	# Replace dropout layer in classifier with batch normalization
	model.classifier[0] = nn.BatchNorm2d(512)

	print(model.features)
	print(model.classifier)

	# # Resuming training
	# model = load_model(model, 'squeezenet_ar_faces_9.pt')

	# Freeze all parameters
	for p in model.parameters():
		p.requires_grad = False

	# Make classifier and the last 2 layers of the feature extractor trainable
	# for p in model.features[-1].parameters():
	# 	p.requires_grad = True

	# for p in model.features[-2].parameters():
	# 	p.requires_grad = True

	for p in model.classifier.parameters():
		p.requires_grad = True

	trainable_params = [p for p in model.parameters() if p.requires_grad==True]

	# Cross entropy loss function
	criterion = nn.CrossEntropyLoss()

	# Adam optimizer
	optimizer = optim.Adam(trainable_params, lr=10e-4)

	# For each epoch, train model on train set and evaluate on eval set
	for epoch in range(epochs):

		# # Resuming training
		# epoch += 10

		print('Epoch: {}'.format(epoch))

		# Train
		model, _, _ = train_model(model, train_loader, criterion, optimizer)

		# Validate
		val_acc = eval_model(model, val_loader)

		# Save
		save_model(model, fname='squeezenet_{}_{}.pt'.format(data, epoch))

	# Test
	test_acc = eval_model(model, test_loader)