def save_grid(d_config, all_samples, gridsize, path, final_only, ckpt_id=None):
    """

    Args:
        d_config: data config
        all_samples: all samples
        gridsize: how many images to save
        path: where to save the images
        final_only: whether to only save the final sample (true), or the sampling process (false)
        ckpt_id: checkpoint id

    """

    griddim = int(np.sqrt(gridsize))
    imdims = [d_config.channels, d_config.image_size, d_config.image_size]
    if final_only:
        sample = all_samples[-1].view(all_samples[-1].shape[0], *imdims)
        sample = inverse_data_transform(d_config, sample)
        save_image(make_grid(sample, griddim), fp=path + str(ckpt_id) + ".png")

    else:
        for i, sample in tqdm.tqdm(enumerate(all_samples),
                                   total=len(all_samples),
                                   desc="saving image samples"):
            sample = sample.view(sample.shape[0], *imdims)
            sample = inverse_data_transform(d_config, sample)
            save_image(make_grid(sample, griddim), fp=path + str(i) + ".png")
Example #2
0
    def sample_sbp(self, S, D):
        dataset, test_dataset = get_dataset(self.args, self.config)
        train_loader = data.DataLoader(
            dataset,
            batch_size=5,
            shuffle=True,
            num_workers=self.config.data.num_workers,
        )

        for i, (x, y) in enumerate(train_loader):
            images = tvu.make_grid(x, nrow=5, padding=1, pad_value=1, normalize=False)
            tvu.save_image(images, os.path.join(self.args.image_folder, "reals.png"))
            break

        x = torch.zeros(
            64,
            self.config.data.channels,
            self.config.data.image_size,
            self.config.data.image_size,
            device=self.device,
        )
        x = sbp_stage1(x, S, self.config, D, tau=self.args.tau, record=True)
        images = tvu.make_grid(inverse_data_transform(self.config, x), nrow=8, padding=1, pad_value=1, normalize=False)
        tvu.save_image(images, os.path.join(self.args.image_folder, "1-final.png"))
        x = sbp_stage2(x, S, self.config, sigma_sq=self.args.sigma_sq, record=True)
        images = tvu.make_grid(inverse_data_transform(self.config, x), nrow=8, padding=1, pad_value=1, normalize=False)
        tvu.save_image(images, os.path.join(self.args.image_folder, "2-final.png"))
Example #3
0
    def run(self):

        bs = self.config.sampling.batch_size

        dataloader = self.get_dataloader(bs=bs)
        sigmas = self.get_sigmas(npy=True)
        score = self.get_model()

        final_samples_denoised = None

        kwargs = {'sigmas': sigmas, 'nsigma': self.config.sampling.nsigma,
                  'step_lr': self.config.sampling.step_lr, 'final_only': True, 'target': self.args.target,
                  'noise_first': self.config.sampling.noise_first}

        output_path = self.args.image_folder
        output_path_denoised = self.args.image_folder_denoised

        os.makedirs(output_path, exist_ok=True)
        os.makedirs(output_path_denoised, exist_ok=True)
        os.makedirs(self.args.fid_folder, exist_ok=True)

        for ckpt in tqdm.tqdm(range(self.config.fast_fid.begin_ckpt, self.config.fast_fid.end_ckpt + 1,
                                    self.config.training.snapshot_freq), desc="processing ckpt"):

            score = self._load_states(score)
            score.eval()
            kwargs['scorenet'] = score

            for k in range(self.config.fast_fid.num_samples // bs):

                final_samples, final_samples_denoised = self.sample(dataloader, saveimages=(k == 0), kwargs=kwargs,
                                                                    bs=bs, gridsize=100, ckpt_id=ckpt)

                sizes = [self.config.data.channels, self.config.data.image_size, self.config.data.image_size]

                for i, sample in enumerate(final_samples[0]):
                    sample = inverse_data_transform(self.config.data, sample.view(*sizes))
                    save_image(sample, os.path.join(output_path, 'sample_{}.png'.format(i + k * bs)))

                if final_samples_denoised is not None:
                    for i, sample in enumerate(final_samples_denoised[0]):
                        sample = inverse_data_transform(self.config.data, sample.view(*sizes))
                        save_image(sample, os.path.join(output_path_denoised, 'sample_{}.png'.format(i + k * bs)))

            log_output = open(f"{self.args.fid_folder}/log_FID.txt", 'a+')
            stat_path = get_fid_stats_path(self.config.data, fid_stats_folder=self.args.exp)

            fid = get_fid(stat_path, output_path, bs=self.config.fast_fid.batch_size)
            print("(Samples) {} ckpt: {}, fid: {}".format(self.args.doc, ckpt, fid))
            print("(Samples) {} ckpt: {}, fid: {}".format(self.args.doc, ckpt, fid), file=log_output)

            if final_samples_denoised is not None:
                fid_denoised = get_fid(stat_path, output_path_denoised, bs=self.config.fast_fid.batch_size)
                print("(Denoised samples) {} ckpt: {}, fid: {}".format(self.args.doc, ckpt, fid_denoised))
                print("(Denoised samples) {} ckpt: {}, fid: {}".format(self.args.doc, ckpt, fid_denoised),
                      file=log_output)
Example #4
0
def sbp_stage2(x, S, config, sigma_sq, n_stages=1000, record=False, **kwargs):
    sigma = np.sqrt(sigma_sq)
    with torch.no_grad():
        n = x.size(0)
        x_new = x.to('cuda')
        for k in range(n_stages):
            if record:
                if not k % (n_stages / 10):
                    images = tvu.make_grid(inverse_data_transform(
                        config, x_new),
                                           nrow=8,
                                           padding=1,
                                           pad_value=1,
                                           normalize=False)
                    tvu.save_image(
                        images,
                        os.path.join("./exp/image_samples/images",
                                     "2-%06d.png" % k))
            t = (torch.ones(n) * k).to(x.device)
            e = S(x_new + config.image_mean.to(x_new.device)[None, ...],
                  t.float())
            x0_from_e = x_new - sigma_sq * e / n_stages
            noise = torch.randn_like(x_new)
            x_new = x0_from_e + sigma * noise / np.sqrt(n_stages)
            if k == n_stages - 1:
                # denoise
                t = (torch.ones(n) * (n_stages - 1)).to(x.device)
                e = S(x_new + config.image_mean.to(x_new.device)[None, ...],
                      t.float())
                x0_from_e = x_new - sigma_sq * e / n_stages
                x_new = x0_from_e
    return x_new
Example #5
0
    def sample_fid(self, model):
        config = self.config
        img_id = len(glob.glob(f"{self.args.image_folder}/*"))
        print(f"starting from image {img_id}")
        total_n_samples = 50000
        n_rounds = (total_n_samples - img_id) // config.sampling.batch_size

        with paddle.no_grad():
            for _ in tqdm.tqdm(
                    range(n_rounds),
                    desc="Generating image samples for FID evaluation."):
                n = config.sampling.batch_size
                x = paddle.randn(
                    n,
                    config.data.channels,
                    config.data.image_size,
                    config.data.image_size,
                )

                x = self.sample_image(x, model)
                x = inverse_data_transform(config, x)

                for i in range(n):
                    Image.fromarray(
                        np.uint8(x[i].numpy().transpose([1, 2, 0]) *
                                 255)).save(
                                     os.path.join(self.args.image_folder,
                                                  f"{img_id}.png"))
                    img_id += 1
Example #6
0
    def sample_fid(self, S, D):
        img_id = len(glob.glob(f"{self.args.image_folder}/*"))
        print(f"starting from image {img_id}")
        total_n_samples = self.config.sampling.total_n_samples
        n = self.config.sampling.batch_size
        n_rounds = (total_n_samples - img_id) // n

        with torch.no_grad():
            for _ in tqdm.tqdm(
                range(n_rounds), desc="Generating image samples for FID evaluation."
            ):
                x = torch.zeros(
                    n,
                    self.config.data.channels,
                    self.config.data.image_size,
                    self.config.data.image_size,
                    device=self.device,
                )
                x = self.sample_image_sbp(x, S, D)
                x = inverse_data_transform(self.config, x)
                for i in range(n):
                    tvu.save_image(
                        x[i], os.path.join(self.args.image_folder, f"{img_id}.png")
                    )
                    img_id += 1
Example #7
0
    def sample_interpolation(self, S):
        dataset, test_dataset = get_dataset(self.args, self.config)
        train_loader = data.DataLoader(
            dataset,
            batch_size=2,
            shuffle=True,
            num_workers=self.config.data.num_workers,
        )
        for i, (x, y) in enumerate(train_loader):
            images = tvu.make_grid(x, nrow=2, padding=1, pad_value=1, normalize=False)
            tvu.save_image(images, os.path.join(self.args.image_folder, "reals.png"))
            break

        noise = torch.randn(
            1,
            self.config.data.channels,
            self.config.data.image_size,
            self.config.data.image_size,
            device=self.device,
        ).repeat(2, 1, 1, 1) * np.sqrt(0.1)
        x = noise + data_transform(self.config, x.to(self.device))
        coef = torch.linspace(0, 1, 10).view(-1, 1, 1, 1)
        coef = coef.to(self.device)
        x = x[[1]] * coef + x[[0]] * (1 - coef)
        x = sbp_stage2_interpolation(x, S, self.config, sigma_sq=0.1, record=True)
        images = tvu.make_grid(inverse_data_transform(self.config, x), nrow=10, padding=1, pad_value=1, normalize=False)
        tvu.save_image(images, os.path.join(self.args.image_folder, "2-final.png"))
Example #8
0
    def sample_inpainting(self, S):
        dataset, test_dataset = get_dataset(self.args, self.config)
        train_loader = data.DataLoader(
            dataset,
            batch_size=4,
            shuffle=True,
            num_workers=self.config.data.num_workers,
        )
        for i, (x, y) in enumerate(train_loader):
            images = tvu.make_grid(x, nrow=1, padding=1, pad_value=1, normalize=False)
            tvu.save_image(images, os.path.join(self.args.image_folder, "reals.png"))
            break

        mask = torch.zeros(
            4,
            self.config.data.channels,
            self.config.data.image_size,
            self.config.data.image_size,
            device=self.device,
        )
        mask[:, :, :, :16] += 1 # 0 for missing pixels
        x_occluded = x.to(self.device) * mask
        images = tvu.make_grid(x_occluded, nrow=1, padding=1, pad_value=1, normalize=False)
        tvu.save_image(images, os.path.join(self.args.image_folder, "2-occluded.png"))

        torch.manual_seed(1)

        x = data_transform(self.config, x.to(self.device))
        x = sbp_stage2_inpainting(x, mask, S, self.config, sigma_sq=self.args.sigma_sq, record=True)
        images = tvu.make_grid(inverse_data_transform(self.config, x), nrow=1, padding=1, pad_value=1, normalize=False)
        tvu.save_image(images, os.path.join(self.args.image_folder, "2-final.png"))
Example #9
0
    def fast_ensemble_fid(self):
        from evaluation.fid_score import get_fid, get_fid_stats_path
        import pickle

        num_ensembles = 5
        scores = [NCSN(self.config).to(self.config.device) for _ in range(num_ensembles)]
        scores = [torch.nn.DataParallel(score) for score in scores]

        sigmas_th = get_sigmas(self.config)
        sigmas = sigmas_th.cpu().numpy()

        fids = {}
        for ckpt in tqdm.tqdm(range(self.config.fast_fid.begin_ckpt, self.config.fast_fid.end_ckpt + 1, 5000),
                              desc="processing ckpt"):
            begin_ckpt = max(self.config.fast_fid.begin_ckpt, ckpt - (num_ensembles - 1) * 5000)
            index = 0
            for i in range(begin_ckpt, ckpt + 5000, 5000):
                states = torch.load(os.path.join(self.args.log_path, f'checkpoint_{i}.pth'),
                                    map_location=self.config.device)
                scores[index].load_state_dict(states[0])
                scores[index].eval()
                index += 1

            def scorenet(x, labels):
                num_ckpts = (ckpt - begin_ckpt) // 5000 + 1
                return sum([scores[i](x, labels) for i in range(num_ckpts)]) / num_ckpts

            num_iters = self.config.fast_fid.num_samples // self.config.fast_fid.batch_size
            output_path = os.path.join(self.args.image_folder, 'ckpt_{}'.format(ckpt))
            os.makedirs(output_path, exist_ok=True)
            for i in range(num_iters):
                init_samples = torch.rand(self.config.fast_fid.batch_size, self.config.data.channels,
                                          self.config.data.image_size, self.config.data.image_size,
                                          device=self.config.device)
                init_samples = data_transform(self.config, init_samples)

                all_samples = anneal_Langevin_dynamics(init_samples, scorenet, sigmas,
                                                       self.config.fast_fid.n_steps_each,
                                                       self.config.fast_fid.step_lr,
                                                       verbose=self.config.fast_fid.verbose,
                                                       denoise=self.config.sampling.denoise)

                final_samples = all_samples[-1]
                for id, sample in enumerate(final_samples):
                    sample = sample.view(self.config.data.channels,
                                         self.config.data.image_size,
                                         self.config.data.image_size)

                    sample = inverse_data_transform(self.config, sample)

                    save_image(sample, os.path.join(output_path, 'sample_{}.png'.format(id)))

            stat_path = get_fid_stats_path(self.args, self.config, download=True)
            fid = get_fid(stat_path, output_path)
            fids[ckpt] = fid
            print("ckpt: {}, fid: {}".format(ckpt, fid))

        with open(os.path.join(self.args.image_folder, 'fids.pickle'), 'wb') as handle:
            pickle.dump(fids, handle, protocol=pickle.HIGHEST_PROTOCOL)
    def run(self):
        sigmas = self.get_sigmas(npy=True)
        score = self.load_score(eval=True)

        classifier = Net()
        classifier.load_state_dict(torch.load('./evaluation/mnist_cnn.pt'))
        classifier = classifier.cuda()
        targets = np.zeros(1000, dtype=np.int32)
        targets_denoised = np.zeros(1000, dtype=np.int32)

        kwargs = {
            'scorenet': score,
            'sigmas': sigmas,
            'nsigma': self.config.sampling.nsigma,
            'step_lr': self.config.sampling.step_lr,
            'final_only': True,
            'save_freq': self.config.sampling.save_freq,
            'target': self.args.target,
            'noise_first': self.config.sampling.noise_first
        }

        bs = self.config.fast_fid.batch_size
        for k in range(self.config.fast_fid.num_samples // bs):
            all_samples, all_samples_denoised = self.sample(None,
                                                            saveimages=False,
                                                            kwargs=kwargs,
                                                            bs=bs)

            img = inverse_data_transform(self.config.data, all_samples[-1])
            targets = compute_target(img, classifier, targets)

            img = inverse_data_transform(self.config.data, all_samples[-1])
            targets_denoised = compute_target(img, classifier, targets)

        covered_targets, Kl_score = compute_score(
            targets, self.config.fast_fid.num_samples)

        str_ = " {} ||  lr {} n_step_each {}  |  Covered Targets:{}, KL Score:{}]"
        o = str_.format(self.args.doc, self.config.sampling.step_lr,
                        self.config.sampling.nsigma, covered_targets, Kl_score)
        print(o)
        print(o, file=open(f"{self.args.fid_folder}/log_FID.txt", 'a+'))
Example #11
0
    def sample_sequence(self, model):
        config = self.config

        x = paddle.randn([
            8,
            config.data.channels,
            config.data.image_size,
            config.data.image_size,
        ])

        # NOTE: This means that we are producing each predicted x0, not x_{t-1} at timestep t.
        with paddle.no_grad():
            _, x = self.sample_image(x, model, last=False)

        x = [inverse_data_transform(config, y) for y in x]

        for i in range(len(x)):
            for j in range(x[i].shape[0]):
                Image.fromarray(
                    np.uint8(x[i][j].numpy().transpose([1, 2, 0]) * 255)).save(
                        os.path.join(self.args.image_folder, f"{j}_{i}.png"))
Example #12
0
    def sample_interpolation(self, model):
        config = self.config

        def slerp(z1, z2, alpha):
            theta = paddle.acos(
                paddle.sum(z1 * z2) / (paddle.norm(z1) * paddle.norm(z2)))
            return (paddle.sin((1 - alpha) * theta) / paddle.sin(theta) * z1 +
                    paddle.sin(alpha * theta) / paddle.sin(theta) * z2)

        z1 = paddle.randn(
            1,
            config.data.channels,
            config.data.image_size,
            config.data.image_size,
        )
        z2 = paddle.randn(
            1,
            config.data.channels,
            config.data.image_size,
            config.data.image_size,
        )
        alpha = paddle.arange(0.0, 1.01, 0.1)
        z_ = []
        for i in range(alpha.shape[0]):
            z_.append(slerp(z1, z2, alpha[i]))

        x = paddle.concat(z_, 0)
        xs = []

        # Hard coded here, modify to your preferences
        with paddle.no_grad():
            for i in range(0, x.shape[0], 8):
                xs.append(self.sample_image(x[i:i + 8], model))
        x = inverse_data_transform(config, paddle.concat(xs, 0))
        for i in range(x.shape[0]):
            Image.fromarray(np.uint8(
                x[i].numpy().transpose([1, 2, 0]) * 255)).save(
                    os.path.join(self.args.image_folder, f"{i}.png"))
Example #13
0
    def sample(self):
        source_dataset, _ = get_dataset(self.args, self.config.source)

        baryproj = get_bary(self.config)
        baryproj.eval()

        if self.config.sampling.ckpt_id is None:
            bp_states = torch.load(os.path.join(self.args.log_path, 'checkpoint.pth'), map_location=self.config.device)
        else:
            bp_states = torch.load(os.path.join(self.args.log_path, f'checkpoint_{self.config.compatibility.ckpt_id}.pth'),
                                     map_location=self.config.device)

        baryproj.load_state_dict(bp_states[0])

        if(not self.config.sampling.fid):
            dataloader = DataLoader(source_dataset,
                                    batch_size=self.config.sampling.batch_size,
                                    shuffle=True,
                                    num_workers=self.config.source.data.num_workers)

            batch_samples = []
            for i in range(self.config.sampling.n_batches):
                (Xs, _) = next(iter(dataloader))
                Xs = data_transform(self.config.source, Xs)
                transport = baryproj(Xs)
                batch_samples.append(inverse_data_transform(self.config, transport))

            sample = torch.cat(batch_samples, dim=0)

            image_grid = make_grid(sample[:min(64, len(sample))], nrow=8)
            save_image(image_grid, os.path.join(self.args.image_folder, 'sample_grid.png'))

            source_grid = make_grid(Xs[:min(64, len(Xs))], nrow=8)
            save_image(source_grid, os.path.join(self.args.image_folder, 'source_grid.png'))

            np.save(os.path.join(self.args.image_folder, 'sample.npy'), sample.detach().cpu().numpy())
            np.save(os.path.join(self.args.image_folder, 'sources.npy'), Xs.detach().cpu().numpy())

        else:
            batch_size = self.config.sampling.samples_per_batch
            total_n_samples = self.config.sampling.num_samples4fid
            n_rounds = total_n_samples // batch_size

            dataloader = DataLoader(source_dataset,
                                    batch_size=self.config.sampling.samples_per_batch,
                                    shuffle=True,
                                    num_workers=self.config.source.data.num_workers)
            data_iter = iter(dataloader)

            img_id = 0
            for _ in tqdm(range(n_rounds), desc='Generating image samples for FID/inception score evaluation'):
                with torch.no_grad():
                    (Xs, _) = next(data_iter)
                    Xs = data_transform(self.config.source, Xs).to(self.config.device)
                    transport = baryproj(Xs)
                for img in transport:
                    img = inverse_data_transform(self.config.target, img)
                    save_image(img, os.path.join(self.args.image_folder, 'image_{}.png'.format(img_id)))
                    img_id += 1
                del Xs
                del transport
Example #14
0
    def fast_ensemble_fid(self):
        from ncsn.evaluation.fid_score import get_fid, get_fid_stats_path
        import pickle

        num_ensembles = 5
        scores = [
            NCSN(self.config.ncsn).to(self.config.device)
            for _ in range(num_ensembles)
        ]
        scores = [torch.nn.DataParallel(score) for score in scores]

        sigmas_th = get_sigmas(self.config.ncsn)
        sigmas = sigmas_th.cpu().numpy()

        if self.config.compatibility.ckpt_id is None:
            cpat_states = torch.load(os.path.join(
                'scones', self.config.compatibility.log_path,
                'checkpoint.pth'),
                                     map_location=self.config.device)
        else:
            cpat_states = torch.load(os.path.join(
                'scones', self.config.compatibility.log_path,
                f'checkpoint_{self.config.compatibility.ckpt_id}.pth'),
                                     map_location=self.config.device)

        cpat = get_compatibility(self.config)
        cpat.load_state_dict(cpat_states[0])

        source_dataset, _ = get_dataset(self.args, self.config.source)
        source_dataloader = DataLoader(
            source_dataset,
            batch_size=self.config.ncsn.sampling.sources_per_batch,
            shuffle=True,
            num_workers=self.config.source.data.num_workers)
        source_iter = iter(source_dataloader)

        fids = {}
        for ckpt in tqdm.tqdm(range(self.config.ncsn.fast_fid.begin_ckpt,
                                    self.config.ncsn.fast_fid.end_ckpt + 1,
                                    5000),
                              desc="processing ckpt"):
            begin_ckpt = max(self.config.ncsn.fast_fid.begin_ckpt,
                             ckpt - (num_ensembles - 1) * 5000)
            index = 0
            for i in range(begin_ckpt, ckpt + 5000, 5000):
                states = torch.load(os.path.join(self.args.log_path,
                                                 f'checkpoint_{i}.pth'),
                                    map_location=self.config.device)
                scores[index].load_state_dict(states[0])
                scores[index].eval()
                index += 1

            def scorenet(x, labels):
                num_ckpts = (ckpt - begin_ckpt) // 5000 + 1
                return sum([scores[i](x, labels)
                            for i in range(num_ckpts)]) / num_ckpts

            num_iters = self.config.ncsn.fast_fid.num_samples // self.config.ncsn.fast_fid.batch_size
            output_path = os.path.join(self.args.image_folder,
                                       'ckpt_{}'.format(ckpt))
            os.makedirs(output_path, exist_ok=True)
            for i in range(num_iters):
                try:
                    (Xs, _) = next(source_iter)
                    Xs_global = torch.cat(
                        [Xs] * self.config.ncsn.sampling.samples_per_source,
                        dim=0).to(self.config.device)
                except StopIteration:
                    source_iter = iter(source_dataloader)
                    (Xs, _) = next(source_iter)
                    Xs_global = torch.cat(
                        [Xs] * self.config.ncsn.sampling.samples_per_source,
                        dim=0).to(self.config.device)

                init_samples = torch.rand(self.config.ncsn.fast_fid.batch_size,
                                          self.config.target.data.channels,
                                          self.config.target.data.image_size,
                                          self.config.target.data.image_size,
                                          device=self.config.device)
                init_samples = data_transform(self.config.target, init_samples)
                init_samples.requires_grad = True
                init_samples = init_samples.to(self.config.device)

                all_samples = anneal_Langevin_dynamics(
                    init_samples,
                    Xs_global,
                    scorenet,
                    cpat,
                    sigmas,
                    self.config.ncsn.fast_fid.n_steps_each,
                    self.config.ncsn.fast_fid.step_lr,
                    verbose=self.config.ncsn.fast_fid.verbose,
                    final_only=self.config.ncsn.sampling.final_only,
                    denoise=self.config.ncsn.sampling.denoise)

                final_samples = all_samples[-1]
                for id, sample in enumerate(final_samples):
                    sample = sample.view(self.config.target.data.channels,
                                         self.config.target.data.image_size,
                                         self.config.target.data.image_size)

                    sample = inverse_data_transform(self.config.target, sample)

                    save_image(
                        sample,
                        os.path.join(output_path, 'sample_{}.png'.format(id)))

            stat_path = get_fid_stats_path(self.args,
                                           self.config.ncsn,
                                           download=True)
            fid = get_fid(stat_path, output_path)
            fids[ckpt] = fid
            print("ckpt: {}, fid: {}".format(ckpt, fid))

        with open(os.path.join(self.args.image_folder, 'fids.pickle'),
                  'wb') as handle:
            pickle.dump(fids, handle, protocol=pickle.HIGHEST_PROTOCOL)
Example #15
0
    def sample(self):
        if self.config.ncsn.sampling.ckpt_id is None:
            ncsn_states = torch.load(os.path.join(
                'scones', self.config.ncsn.sampling.log_path,
                'checkpoint.pth'),
                                     map_location=self.config.device)
        else:
            ncsn_states = torch.load(os.path.join(
                'scones', self.config.ncsn.sampling.log_path,
                f'checkpoint_{self.config.ncsn.sampling.ckpt_id}.pth'),
                                     map_location=self.config.device)

        score = get_scorenet(self.config)
        score = torch.nn.DataParallel(score)

        sigmas_th = get_sigmas(self.config.ncsn)
        sigmas = sigmas_th.cpu().numpy()

        if ("module.sigmas" in ncsn_states[0].keys()):
            ncsn_states[0]["module.sigmas"] = sigmas_th

        score.load_state_dict(ncsn_states[0], strict=True)
        score.eval()

        baryproj_data_init = (hasattr(self.config, "baryproj")
                              and self.config.ncsn.sampling.data_init)

        if (baryproj_data_init):
            if (self.config.baryproj.ckpt_id is None):
                bproj_states = torch.load(os.path.join(
                    'scones', self.config.baryproj.log_path, 'checkpoint.pth'),
                                          map_location=self.config.device)
            else:
                bproj_states = torch.load(os.path.join(
                    'scones', self.config.baryproj.log_path,
                    f'checkpoint_{self.config.baryproj.ckpt_id}.pth'),
                                          map_location=self.config.device)

            bproj = get_bary(self.config)
            bproj.load_state_dict(bproj_states[0])
            bproj = torch.nn.DataParallel(bproj)
            bproj.eval()

        if self.config.compatibility.ckpt_id is None:
            cpat_states = torch.load(os.path.join(
                'scones', self.config.compatibility.log_path,
                'checkpoint.pth'),
                                     map_location=self.config.device)
        else:
            cpat_states = torch.load(os.path.join(
                'scones', self.config.compatibility.log_path,
                f'checkpoint_{self.config.compatibility.ckpt_id}.pth'),
                                     map_location=self.config.device)

        cpat = get_compatibility(self.config)
        cpat.load_state_dict(cpat_states[0])

        if self.config.ncsn.model.ema:
            ema_helper = EMAHelper(mu=self.config.ncsn.model.ema_rate)
            ema_helper.register(score)
            ema_helper.load_state_dict(ncsn_states[-1])
            ema_helper.ema(score)

        source_dataset, _ = get_dataset(self.args, self.config.source)
        dataloader = DataLoader(
            source_dataset,
            batch_size=self.config.ncsn.sampling.sources_per_batch,
            shuffle=True,
            num_workers=self.config.source.data.num_workers)
        data_iter = iter(dataloader)

        (Xs, labels) = next(data_iter)
        Xs_global = torch.cat([Xs] *
                              self.config.ncsn.sampling.samples_per_source,
                              dim=0).to(self.config.device)
        Xs_global = data_transform(self.config.source, Xs_global)

        if (hasattr(self.config.ncsn.sampling, "n_sigmas_skip")):
            n_sigmas_skip = self.config.ncsn.sampling.n_sigmas_skip
        else:
            n_sigmas_skip = 0

        if not self.config.ncsn.sampling.fid:
            if self.config.ncsn.sampling.inpainting:
                ''' NCSN INPAINTING CODE. EITHER PATCH THIS FOR SCONES OR REMOVE IT. 
                
                data_iter = iter(dataloader)
                refer_images, _ = next(data_iter)
                refer_images = refer_images.to(self.config.device)
                width = int(np.sqrt(self.config.sampling.batch_size))
                init_samples = torch.rand(width, width, self.config.data.channels,
                                          self.config.data.image_size,
                                          self.config.data.image_size,
                                          device=self.config.device)
                init_samples = data_transform(self.config, init_samples)
                all_samples = anneal_Langevin_dynamics_inpainting(init_samples, refer_images[:width, ...], score,
                                                                  sigmas,
                                                                  self.config.data.image_size,
                                                                  self.config.sampling.n_steps_each,
                                                                  self.config.sampling.step_lr)

                torch.save(refer_images[:width, ...], os.path.join(self.args.image_folder, 'refer_image.pth'))
                refer_images = refer_images[:width, None, ...].expand(-1, width, -1, -1, -1).reshape(-1,
                                                                                                     *refer_images.shape[
                                                                                                      1:])
                save_image(refer_images, os.path.join(self.args.image_folder, 'refer_image.png'), nrow=width)

                if not self.config.sampling.final_only:
                    for i, sample in enumerate(tqdm.tqdm(all_samples)):
                        sample = sample.view(self.config.sampling.batch_size, self.config.data.channels,
                                             self.config.data.image_size,
                                             self.config.data.image_size)

                        sample = inverse_data_transform(self.config, sample)

                        image_grid = make_grid(sample, int(np.sqrt(self.config.sampling.batch_size)))
                        save_image(image_grid, os.path.join(self.args.image_folder, 'image_grid_{}.png'.format(i)))
                        torch.save(sample, os.path.join(self.args.image_folder, 'completion_{}.pth'.format(i)))
                else:
                    sample = all_samples[-1].view(self.config.sampling.batch_size, self.config.data.channels,
                                                  self.config.data.image_size,
                                                  self.config.data.image_size)

                    sample = inverse_data_transform(self.config, sample)

                    image_grid = make_grid(sample, int(np.sqrt(self.config.sampling.batch_size)))
                    save_image(image_grid, os.path.join(self.args.image_folder,
                                                        'image_grid_{}.png'.format(self.config.ncsn.sampling.ckpt_id)))
                    torch.save(sample, os.path.join(self.args.image_folder,
                                                    'completion_{}.pth'.format(self.config.sampling.ckpt_id)))
                '''

                raise NotImplementedError(
                    "Inpainting with SCONES is not currently implemented.")
            elif self.config.ncsn.sampling.interpolation:
                ''' NCSN INTERPOLATION CODE. EITHER PATCH THIS FOR SCONES OR REMOVE IT. 
                
                if self.config.sampling.data_init:
                    data_iter = iter(dataloader)
                    samples, _ = next(data_iter)
                    samples = samples.to(self.config.device)
                    samples = data_transform(self.config, samples)
                    init_samples = samples + sigmas_th[0] * torch.randn_like(samples)

                else:
                    init_samples = torch.rand(self.config.sampling.batch_size, self.config.data.channels,
                                              self.config.data.image_size, self.config.data.image_size,
                                              device=self.config.device)
                    init_samples = data_transform(self.config, init_samples)

                all_samples = anneal_Langevin_dynamics_interpolation(init_samples, score, sigmas,
                                                                     self.config.sampling.n_interpolations,
                                                                     self.config.sampling.n_steps_each,
                                                                     self.config.sampling.step_lr, verbose=True,
                                                                     final_only=self.config.sampling.final_only)

                if not self.config.sampling.final_only:
                    for i, sample in tqdm.tqdm(enumerate(all_samples), total=len(all_samples),
                                               desc="saving image samples"):
                        sample = sample.view(sample.shape[0], self.config.data.channels,
                                             self.config.data.image_size,
                                             self.config.data.image_size)

                        sample = inverse_data_transform(self.config, sample)

                        image_grid = make_grid(sample, nrow=self.config.sampling.n_interpolations)
                        save_image(image_grid, os.path.join(self.args.image_folder, 'image_grid_{}.png'.format(i)))
                        torch.save(sample, os.path.join(self.args.image_folder, 'samples_{}.pth'.format(i)))
                else:
                    sample = all_samples[-1].view(all_samples[-1].shape[0], self.config.data.channels,
                                                  self.config.data.image_size,
                                                  self.config.data.image_size)

                    sample = inverse_data_transform(self.config, sample)

                    image_grid = make_grid(sample, self.config.sampling.n_interpolations)
                    save_image(image_grid, os.path.join(self.args.image_folder,
                                                        'image_grid_{}.png'.format(self.config.sampling.ckpt_id)))
                    torch.save(sample, os.path.join(self.args.image_folder,
                                                    'samples_{}.pth'.format(self.config.sampling.ckpt_id)))
                '''
                raise NotImplementedError(
                    "Interpolation with SCONES is not currently implemented.")
            else:
                if self.config.ncsn.sampling.data_init:
                    if (baryproj_data_init):
                        with torch.no_grad():
                            init_Xt = (bproj(Xs_global) +
                                       sigmas_th[n_sigmas_skip] *
                                       torch.randn_like(Xs_global)).detach()
                    else:
                        init_Xt = Xs_global + sigmas_th[
                            n_sigmas_skip] * torch.randn_like(Xs_global)

                    init_Xt.requires_grad = True
                    init_Xt = init_Xt.to(self.config.device)

                else:
                    init_Xt = torch.rand(
                        self.config.ncsn.sampling.sources_per_batch *
                        self.config.ncsn.sampling.samples_per_source,
                        self.config.target.data.channels,
                        self.config.target.data.image_size,
                        self.config.target.data.image_size,
                        device=self.config.device)
                    init_Xt = data_transform(self.config.target, init_Xt)
                    init_Xt.requires_grad = True
                    init_Xt = init_Xt.to(self.config.device)

                all_samples = anneal_Langevin_dynamics(
                    init_Xt,
                    Xs_global,
                    score,
                    cpat,
                    sigmas,
                    self.config.ncsn.sampling.n_steps_each,
                    self.config.ncsn.sampling.step_lr,
                    verbose=True,
                    final_only=self.config.ncsn.sampling.final_only,
                    denoise=self.config.ncsn.sampling.denoise,
                    n_sigmas_skip=n_sigmas_skip)

                all_samples = torch.stack(all_samples, dim=0)

                if not self.config.ncsn.sampling.final_only:
                    all_samples = all_samples.view(
                        (-1, self.config.ncsn.sampling.sources_per_batch,
                         self.config.ncsn.sampling.samples_per_source,
                         self.config.target.data.channels,
                         self.config.target.data.image_size,
                         self.config.target.data.image_size))
                    np.save(
                        os.path.join(self.args.image_folder,
                                     'all_samples.npy'),
                        all_samples.detach().cpu().numpy())

                sample = all_samples[-1].view(
                    self.config.ncsn.sampling.sources_per_batch *
                    self.config.ncsn.sampling.samples_per_source,
                    self.config.target.data.channels,
                    self.config.target.data.image_size,
                    self.config.target.data.image_size)

                sample = inverse_data_transform(self.config.target, sample)

                image_grid = make_grid(
                    sample, nrow=self.config.ncsn.sampling.sources_per_batch)
                save_image(
                    image_grid,
                    os.path.join(self.args.image_folder, 'sample_grid.png'))

                source_grid = make_grid(
                    Xs, nrow=self.config.ncsn.sampling.sources_per_batch)
                save_image(
                    source_grid,
                    os.path.join(self.args.image_folder, 'source_grid.png'))

                bproj_of_source = make_grid(
                    bproj(Xs),
                    nrow=self.config.ncsn.sampling.sources_per_batch)
                save_image(
                    bproj_of_source,
                    os.path.join(self.args.image_folder, 'bproj_sources.png'))

                np.save(os.path.join(self.args.image_folder, 'sources.npy'),
                        Xs.detach().cpu().numpy())
                np.save(
                    os.path.join(self.args.image_folder, 'source_labels.npy'),
                    labels.detach().cpu().numpy())
                np.save(os.path.join(self.args.image_folder, 'bproj.npy'),
                        bproj(Xs).detach().cpu().numpy())
                np.save(os.path.join(self.args.image_folder, 'samples.npy'),
                        sample.detach().cpu().numpy())

        else:
            batch_size = self.config.ncsn.sampling.sources_per_batch * self.config.ncsn.sampling.samples_per_source
            total_n_samples = self.config.ncsn.sampling.num_samples4fid
            n_rounds = total_n_samples // batch_size
            if self.config.ncsn.sampling.data_init:
                dataloader = DataLoader(
                    source_dataset,
                    batch_size=self.config.ncsn.sampling.sources_per_batch,
                    shuffle=True,
                    num_workers=self.config.source.data.num_workers)
                data_iter = iter(dataloader)

            img_id = 0
            for r in tqdm.tqdm(
                    range(n_rounds),
                    desc=
                    'Generating image samples for FID/inception score evaluation'
            ):
                if self.config.ncsn.sampling.data_init:
                    try:
                        init_samples, labels = next(data_iter)
                        init_samples = torch.cat(
                            [init_samples] *
                            self.config.ncsn.sampling.samples_per_source,
                            dim=0)
                        labels = torch.cat(
                            [labels] *
                            self.config.ncsn.sampling.samples_per_source,
                            dim=0)
                    except StopIteration:
                        data_iter = iter(dataloader)
                        init_samples, labels = next(data_iter)
                        init_samples = torch.cat(
                            [init_samples] *
                            self.config.ncsn.sampling.samples_per_source,
                            dim=0)
                        labels = torch.cat(
                            [labels] *
                            self.config.ncsn.sampling.samples_per_source,
                            dim=0)

                    init_samples = init_samples.to(self.config.device)
                    init_samples = data_transform(self.config.target,
                                                  init_samples)

                    if (baryproj_data_init):
                        with torch.no_grad():
                            bproj_samples = bproj(init_samples).detach()
                    else:
                        bproj_samples = torch.clone(init_samples).detach()

                    samples = bproj_samples + sigmas_th[
                        n_sigmas_skip] * torch.randn_like(bproj_samples)
                    samples.requires_grad = True
                    samples = samples.to(self.config.device)
                else:
                    samples = torch.rand(batch_size,
                                         self.config.target.data.channels,
                                         self.config.target.data.image_size,
                                         self.config.target.data.image_size,
                                         device=self.config.device)
                    init_samples = torch.clone(samples)
                    samples = data_transform(self.config.target, samples)
                    samples.requires_grad = True
                    samples = samples.to(self.config.device)

                all_samples = anneal_Langevin_dynamics(
                    samples,
                    Xs_global,
                    score,
                    cpat,
                    sigmas,
                    self.config.ncsn.sampling.n_steps_each,
                    self.config.ncsn.sampling.step_lr,
                    verbose=True,
                    final_only=self.config.ncsn.sampling.final_only,
                    denoise=self.config.ncsn.sampling.denoise,
                    n_sigmas_skip=n_sigmas_skip)

                samples = all_samples[-1]
                for img in samples:
                    img = inverse_data_transform(self.config.target, img)
                    save_image(
                        img,
                        os.path.join(self.args.image_folder,
                                     'image_{}.png'.format(img_id)))
                    img_id += 1

                if (self.args.save_labels):
                    save_path = os.path.join(self.args.image_folder, 'labels')
                    np.save(os.path.join(save_path, f'sources_{r}.npy'),
                            init_samples.detach().cpu().numpy())
                    np.save(os.path.join(save_path, f'source_labels_{r}.npy'),
                            labels.detach().cpu().numpy())
                    np.save(os.path.join(save_path, f"bproj_{r}.npy"),
                            bproj_samples.detach().cpu().numpy())
                    np.save(os.path.join(save_path, f"samples_{r}.npy"),
                            samples.detach().cpu().numpy())
    def calculate_fid(self):
        import fid, pickle
        import tensorflow as tf

        stats_path = "fid_stats_cifar10_train.npz"  # training set statistics
        inception_path = fid.check_or_download_inception(
            "./tmp/"
        )  # download inception network

        score = get_model(self.config)
        score = torch.nn.DataParallel(score)

        sigmas_th = get_sigmas(self.config)
        sigmas = sigmas_th.cpu().numpy()

        fids = {}
        for ckpt in tqdm.tqdm(
            range(
                self.config.fast_fid.begin_ckpt, self.config.fast_fid.end_ckpt + 1, 5000
            ),
            desc="processing ckpt",
        ):
            states = torch.load(
                os.path.join(self.args.log_path, f"checkpoint_{ckpt}.pth"),
                map_location=self.config.device,
            )

            if self.config.model.ema:
                ema_helper = EMAHelper(mu=self.config.model.ema_rate)
                ema_helper.register(score)
                ema_helper.load_state_dict(states[-1])
                ema_helper.ema(score)
            else:
                score.load_state_dict(states[0])

            score.eval()

            num_iters = (
                self.config.fast_fid.num_samples // self.config.fast_fid.batch_size
            )
            output_path = os.path.join(self.args.image_folder, "ckpt_{}".format(ckpt))
            os.makedirs(output_path, exist_ok=True)
            for i in range(num_iters):
                init_samples = torch.rand(
                    self.config.fast_fid.batch_size,
                    self.config.data.channels,
                    self.config.data.image_size,
                    self.config.data.image_size,
                    device=self.config.device,
                )
                init_samples = data_transform(self.config, init_samples)

                all_samples = anneal_Langevin_dynamics(
                    init_samples,
                    score,
                    sigmas,
                    self.config.fast_fid.n_steps_each,
                    self.config.fast_fid.step_lr,
                    verbose=self.config.fast_fid.verbose,
                )

                final_samples = all_samples[-1]
                for id, sample in enumerate(final_samples):
                    sample = sample.view(
                        self.config.data.channels,
                        self.config.data.image_size,
                        self.config.data.image_size,
                    )

                    sample = inverse_data_transform(self.config, sample)

                    save_image(
                        sample, os.path.join(output_path, "sample_{}.png".format(id))
                    )

            # load precalculated training set statistics
            f = np.load(stats_path)
            mu_real, sigma_real = f["mu"][:], f["sigma"][:]
            f.close()

            fid.create_inception_graph(
                inception_path
            )  # load the graph into the current TF graph
            final_samples = (
                (final_samples - final_samples.min())
                / (final_samples.max() - final_samples.min()).data.cpu().numpy()
                * 255
            )
            final_samples = np.transpose(final_samples, [0, 2, 3, 1])
            with tf.Session() as sess:
                sess.run(tf.global_variables_initializer())
                mu_gen, sigma_gen = fid.calculate_activation_statistics(
                    final_samples, sess, batch_size=100
                )

            fid_value = fid.calculate_frechet_distance(
                mu_gen, sigma_gen, mu_real, sigma_real
            )
            print("FID: %s" % fid_value)

        with open(os.path.join(self.args.image_folder, "fids.pickle"), "wb") as handle:
            pickle.dump(fids, handle, protocol=pickle.HIGHEST_PROTOCOL)
Example #17
0
def sbp_stage1(x, S, config, D, tau, n_stages=1000, record=False, **kwargs):
    m = 1
    with torch.no_grad():
        n = x.size(0)
        x_new = x.to('cuda')
        t = (torch.ones(n * m) * 0).to(x.device)
        for k in range(n_stages):
            if record:
                if not k % (n_stages / 10):
                    images = tvu.make_grid(inverse_data_transform(
                        config, x_new),
                                           nrow=8,
                                           padding=1,
                                           pad_value=1,
                                           normalize=False)
                    tvu.save_image(
                        images,
                        os.path.join("./exp/image_samples/images",
                                     "1-%06d.png" % k))
            t_k = k / n_stages
            coef = np.sqrt(tau) * np.sqrt(1 - t_k)
            z1 = torch.randn(m,
                             n,
                             x_new.shape[1],
                             x_new.shape[2],
                             x_new.shape[3],
                             dtype=torch.float32,
                             device=x_new.device)
            interpolation1 = x_new.view(1, n, x_new.shape[1], x_new.shape[2],
                                        x_new.shape[3]) + coef * z1
            interpolation1 = interpolation1.view(-1, x_new.shape[1],
                                                 x_new.shape[2],
                                                 x_new.shape[3])
            density_ratio1 = torch.exp(D(interpolation1).detach()).view(
                m, n, 1, 1, 1)
            z2 = torch.randn(m,
                             n,
                             x_new.shape[1],
                             x_new.shape[2],
                             x_new.shape[3],
                             dtype=torch.float32,
                             device=x_new.device)
            interpolation2 = x_new.view(1, n, x_new.shape[1], x_new.shape[2],
                                        x_new.shape[3]) + coef * z2
            interpolation2 = interpolation2.view(-1, x_new.shape[1],
                                                 x_new.shape[2],
                                                 x_new.shape[3])
            density_ratio2 = torch.exp(D(interpolation2).detach()).view(
                m, n, 1, 1, 1)

            output = S(
                interpolation1 + config.image_mean.to(x_new.device)[None, ...],
                t.float())
            e = output.view(m, n, x_new.shape[1], x_new.shape[2],
                            x_new.shape[3])

            b = torch.mean(
                (-e + coef * z1 / tau) * density_ratio1, dim=0) / torch.mean(
                    density_ratio2, dim=0) + x_new / tau
            x0_from_e = x_new + tau * b / n_stages
            noise = torch.randn_like(x_new)
            x_new = x0_from_e + np.sqrt(tau) * noise / np.sqrt(n_stages)
        # Tweedie's formula
        if record:
            t = (torch.ones(n) * 0).to(x.device)
            e = S(x_new + config.image_mean.to(x_new.device)[None, ...],
                  t.float())
            x0_from_e = x_new - e
            images = tvu.make_grid(inverse_data_transform(config, x0_from_e),
                                   nrow=8,
                                   padding=1,
                                   pad_value=1,
                                   normalize=False)
            tvu.save_image(
                images,
                os.path.join("./exp/image_samples/images", "1-tweedie.png"))
    return x_new
Example #18
0
    def fast_fid(self):
        ### Test the fids of ensembled checkpoints.
        ### Shouldn't be used for pretrained with ema
        if self.config.fast_fid.ensemble:
            if self.config.model.ema:
                raise RuntimeError(
                    "Cannot apply ensembling to pretrained with EMA.")
            self.fast_ensemble_fid()
            return

        from ncsn.evaluation.fid_score import get_fid, get_fid_stats_path
        import pickle
        score = get_model(self.config)
        score = torch.nn.DataParallel(score)

        sigmas_th = get_sigmas(self.config)
        sigmas = sigmas_th.cpu().numpy()

        fids = {}
        for ckpt in tqdm.tqdm(range(self.config.fast_fid.begin_ckpt,
                                    self.config.fast_fid.end_ckpt + 1, 5000),
                              desc="processing ckpt"):
            states = torch.load(os.path.join(self.args.log_path,
                                             f'checkpoint_{ckpt}.pth'),
                                map_location=self.config.device)

            if self.config.model.ema:
                ema_helper = EMAHelper(mu=self.config.model.ema_rate)
                ema_helper.register(score)
                ema_helper.load_state_dict(states[-1])
                ema_helper.ema(score)
            else:
                score.load_state_dict(states[0])

            score.eval()

            num_iters = self.config.fast_fid.num_samples // self.config.fast_fid.batch_size
            output_path = os.path.join(self.args.image_folder,
                                       'ckpt_{}'.format(ckpt))
            os.makedirs(output_path, exist_ok=True)
            for i in range(num_iters):
                init_samples = torch.rand(self.config.fast_fid.batch_size,
                                          self.config.data.channels,
                                          self.config.data.image_size,
                                          self.config.data.image_size,
                                          device=self.config.device)
                init_samples = data_transform(self.config, init_samples)

                all_samples = anneal_Langevin_dynamics(
                    init_samples,
                    score,
                    sigmas,
                    self.config.fast_fid.n_steps_each,
                    self.config.fast_fid.step_lr,
                    verbose=self.config.fast_fid.verbose,
                    denoise=self.config.sampling.denoise)

                final_samples = all_samples[-1]
                for id, sample in enumerate(final_samples):
                    sample = sample.view(self.config.data.channels,
                                         self.config.data.image_size,
                                         self.config.data.image_size)

                    sample = inverse_data_transform(self.config, sample)

                    save_image(
                        sample,
                        os.path.join(output_path, 'sample_{}.png'.format(id)))

            stat_path = get_fid_stats_path(self.args,
                                           self.config,
                                           download=True)
            fid = get_fid(stat_path, output_path)
            fids[ckpt] = fid
            print("ckpt: {}, fid: {}".format(ckpt, fid))

        with open(os.path.join(self.args.image_folder, 'fids.pickle'),
                  'wb') as handle:
            pickle.dump(fids, handle, protocol=pickle.HIGHEST_PROTOCOL)
Example #19
0
    def train(self):
        dataset, test_dataset = get_dataset(self.args, self.config)
        dataloader = DataLoader(dataset,
                                batch_size=self.config.training.batch_size,
                                shuffle=True,
                                num_workers=self.config.data.num_workers)
        test_loader = DataLoader(test_dataset,
                                 batch_size=self.config.training.batch_size,
                                 shuffle=True,
                                 num_workers=self.config.data.num_workers,
                                 drop_last=True)
        test_iter = iter(test_loader)
        self.config.input_dim = self.config.data.image_size**2 * self.config.data.channels

        tb_logger = self.config.tb_logger

        score = get_model(self.config)

        score = torch.nn.DataParallel(score)
        optimizer = get_optimizer(self.config, score.parameters())

        start_epoch = 0
        step = 0

        if self.config.model.ema:
            ema_helper = EMAHelper(mu=self.config.model.ema_rate)
            ema_helper.register(score)

        if self.args.resume_training:
            states = torch.load(
                os.path.join(self.args.log_path, 'checkpoint.pth'))
            score.load_state_dict(states[0])
            ### Make sure we can resume with different eps
            states[1]['param_groups'][0]['eps'] = self.config.optim.eps
            optimizer.load_state_dict(states[1])
            start_epoch = states[2]
            step = states[3]
            if self.config.model.ema:
                ema_helper.load_state_dict(states[4])

        sigmas = get_sigmas(self.config)

        if self.config.training.log_all_sigmas:
            ### Commented out training time logging to save time.
            test_loss_per_sigma = [None for _ in range(len(sigmas))]

            def hook(loss, labels):
                # for i in range(len(sigmas)):
                #     if torch.any(labels == i):
                #         test_loss_per_sigma[i] = torch.mean(loss[labels == i])
                pass

            def tb_hook():
                # for i in range(len(sigmas)):
                #     if test_loss_per_sigma[i] is not None:
                #         tb_logger.add_scalar('test_loss_sigma_{}'.format(i), test_loss_per_sigma[i],
                #                              global_step=step)
                pass

            def test_hook(loss, labels):
                for i in range(len(sigmas)):
                    if torch.any(labels == i):
                        test_loss_per_sigma[i] = torch.mean(loss[labels == i])

            def test_tb_hook():
                for i in range(len(sigmas)):
                    if test_loss_per_sigma[i] is not None:
                        tb_logger.add_scalar('test_loss_sigma_{}'.format(i),
                                             test_loss_per_sigma[i],
                                             global_step=step)

        else:
            hook = test_hook = None

            def tb_hook():
                pass

            def test_tb_hook():
                pass

        for epoch in range(start_epoch, self.config.training.n_epochs):
            for i, (X, y) in enumerate(dataloader):
                score.train()
                step += 1

                X = X.to(self.config.device)
                X = data_transform(self.config, X)

                loss = anneal_dsm_score_estimation(
                    score, X, sigmas, None, self.config.training.anneal_power,
                    hook)
                tb_logger.add_scalar('loss', loss, global_step=step)
                tb_hook()

                logging.info("step: {}, loss: {}".format(step, loss.item()))

                optimizer.zero_grad()
                loss.backward()
                optimizer.step()

                if self.config.model.ema:
                    ema_helper.update(score)

                if step >= self.config.training.n_iters:
                    return 0

                if step % 100 == 0:
                    if self.config.model.ema:
                        test_score = ema_helper.ema_copy(score)
                    else:
                        test_score = score

                    test_score.eval()
                    try:
                        test_X, test_y = next(test_iter)
                    except StopIteration:
                        test_iter = iter(test_loader)
                        test_X, test_y = next(test_iter)

                    test_X = test_X.to(self.config.device)
                    test_X = data_transform(self.config, test_X)

                    with torch.no_grad():
                        test_dsm_loss = anneal_dsm_score_estimation(
                            test_score,
                            test_X,
                            sigmas,
                            None,
                            self.config.training.anneal_power,
                            hook=test_hook)
                        tb_logger.add_scalar('test_loss',
                                             test_dsm_loss,
                                             global_step=step)
                        test_tb_hook()
                        logging.info("step: {}, test_loss: {}".format(
                            step, test_dsm_loss.item()))

                        del test_score

                if step % self.config.training.snapshot_freq == 0:
                    states = [
                        score.state_dict(),
                        optimizer.state_dict(),
                        epoch,
                        step,
                    ]
                    if self.config.model.ema:
                        states.append(ema_helper.state_dict())

                    torch.save(
                        states,
                        os.path.join(self.args.log_path,
                                     'checkpoint_{}.pth'.format(step)))
                    torch.save(
                        states,
                        os.path.join(self.args.log_path, 'checkpoint.pth'))

                    if self.config.training.snapshot_sampling:
                        if self.config.model.ema:
                            test_score = ema_helper.ema_copy(score)
                        else:
                            test_score = score

                        test_score.eval()

                        ## Different part from NeurIPS 2019.
                        ## Random state will be affected because of sampling during training time.
                        init_samples = torch.rand(36,
                                                  self.config.data.channels,
                                                  self.config.data.image_size,
                                                  self.config.data.image_size,
                                                  device=self.config.device)
                        init_samples = data_transform(self.config,
                                                      init_samples)

                        all_samples = anneal_Langevin_dynamics(
                            init_samples,
                            test_score,
                            sigmas.cpu().numpy(),
                            self.config.sampling.n_steps_each,
                            self.config.sampling.step_lr,
                            final_only=True,
                            verbose=True,
                            denoise=self.config.sampling.denoise)

                        sample = all_samples[-1].view(
                            all_samples[-1].shape[0],
                            self.config.data.channels,
                            self.config.data.image_size,
                            self.config.data.image_size)

                        sample = inverse_data_transform(self.config, sample)

                        image_grid = make_grid(sample, 6)
                        save_image(
                            image_grid,
                            os.path.join(self.args.log_sample_path,
                                         'image_grid_{}.png'.format(step)))
                        torch.save(
                            sample,
                            os.path.join(self.args.log_sample_path,
                                         'samples_{}.pth'.format(step)))

                        del test_score
                        del all_samples
Example #20
0
    def sample(self, return_NCSN=False):
        if self.config.sampling.ckpt_id is None:
            states = torch.load(os.path.join(self.args.log_path,
                                             'checkpoint.pth'),
                                map_location=self.config.device)
        else:
            states = torch.load(os.path.join(
                self.args.log_path,
                f'checkpoint_{self.config.sampling.ckpt_id}.pth'),
                                map_location=self.config.device)

        score = get_model(self.config)
        score = torch.nn.DataParallel(score)

        score.load_state_dict(states[0], strict=True)

        if self.config.model.ema:
            ema_helper = EMAHelper(mu=self.config.model.ema_rate)
            ema_helper.register(score)
            ema_helper.load_state_dict(states[-1])
            ema_helper.ema(score)

        sigmas_th = get_sigmas(self.config)
        sigmas = sigmas_th.cpu().numpy()

        dataset, _ = get_dataset(self.args, self.config)
        dataloader = DataLoader(dataset,
                                batch_size=self.config.sampling.batch_size,
                                shuffle=True,
                                num_workers=4)

        score.eval()

        if (return_NCSN):
            return score

        if not self.config.sampling.fid:
            if self.config.sampling.inpainting:
                data_iter = iter(dataloader)
                refer_images, _ = next(data_iter)
                refer_images = refer_images.to(self.config.device)
                width = int(np.sqrt(self.config.sampling.batch_size))
                init_samples = torch.rand(width,
                                          width,
                                          self.config.data.channels,
                                          self.config.data.image_size,
                                          self.config.data.image_size,
                                          device=self.config.device)
                init_samples = data_transform(self.config, init_samples)
                all_samples = anneal_Langevin_dynamics_inpainting(
                    init_samples, refer_images[:width, ...], score, sigmas,
                    self.config.data.image_size,
                    self.config.sampling.n_steps_each,
                    self.config.sampling.step_lr)

                torch.save(
                    refer_images[:width, ...],
                    os.path.join(self.args.image_folder, 'refer_image.pth'))
                refer_images = refer_images[:width, None, ...].expand(
                    -1, width, -1, -1, -1).reshape(-1, *refer_images.shape[1:])
                save_image(refer_images,
                           os.path.join(self.args.image_folder,
                                        'refer_image.png'),
                           nrow=width)

                if not self.config.sampling.final_only:
                    for i, sample in enumerate(tqdm.tqdm(all_samples)):
                        sample = sample.view(self.config.sampling.batch_size,
                                             self.config.data.channels,
                                             self.config.data.image_size,
                                             self.config.data.image_size)

                        sample = inverse_data_transform(self.config, sample)

                        image_grid = make_grid(
                            sample,
                            int(np.sqrt(self.config.sampling.batch_size)))
                        save_image(
                            image_grid,
                            os.path.join(self.args.image_folder,
                                         'image_grid_{}.png'.format(i)))
                        torch.save(
                            sample,
                            os.path.join(self.args.image_folder,
                                         'completion_{}.pth'.format(i)))
                else:
                    sample = all_samples[-1].view(
                        self.config.sampling.batch_size,
                        self.config.data.channels, self.config.data.image_size,
                        self.config.data.image_size)

                    sample = inverse_data_transform(self.config, sample)

                    image_grid = make_grid(
                        sample, int(np.sqrt(self.config.sampling.batch_size)))
                    save_image(
                        image_grid,
                        os.path.join(
                            self.args.image_folder, 'image_grid_{}.png'.format(
                                self.config.sampling.ckpt_id)))
                    torch.save(
                        sample,
                        os.path.join(
                            self.args.image_folder, 'completion_{}.pth'.format(
                                self.config.sampling.ckpt_id)))

            elif self.config.sampling.interpolation:
                if self.config.sampling.data_init:
                    data_iter = iter(dataloader)
                    samples, _ = next(data_iter)
                    samples = samples.to(self.config.device)
                    samples = data_transform(self.config, samples)
                    init_samples = samples + sigmas_th[0] * torch.randn_like(
                        samples)

                else:
                    init_samples = torch.rand(self.config.sampling.batch_size,
                                              self.config.data.channels,
                                              self.config.data.image_size,
                                              self.config.data.image_size,
                                              device=self.config.device)
                    init_samples = data_transform(self.config, init_samples)

                all_samples = anneal_Langevin_dynamics_interpolation(
                    init_samples,
                    score,
                    sigmas,
                    self.config.sampling.n_interpolations,
                    self.config.sampling.n_steps_each,
                    self.config.sampling.step_lr,
                    verbose=True,
                    final_only=self.config.sampling.final_only)

                if not self.config.sampling.final_only:
                    for i, sample in tqdm.tqdm(enumerate(all_samples),
                                               total=len(all_samples),
                                               desc="saving image samples"):
                        sample = sample.view(sample.shape[0],
                                             self.config.data.channels,
                                             self.config.data.image_size,
                                             self.config.data.image_size)

                        sample = inverse_data_transform(self.config, sample)

                        image_grid = make_grid(
                            sample, nrow=self.config.sampling.n_interpolations)
                        save_image(
                            image_grid,
                            os.path.join(self.args.image_folder,
                                         'image_grid_{}.png'.format(i)))
                        torch.save(
                            sample,
                            os.path.join(self.args.image_folder,
                                         'samples_{}.pth'.format(i)))
                else:
                    sample = all_samples[-1].view(all_samples[-1].shape[0],
                                                  self.config.data.channels,
                                                  self.config.data.image_size,
                                                  self.config.data.image_size)

                    sample = inverse_data_transform(self.config, sample)

                    image_grid = make_grid(
                        sample, self.config.sampling.n_interpolations)
                    save_image(
                        image_grid,
                        os.path.join(
                            self.args.image_folder, 'image_grid_{}.png'.format(
                                self.config.sampling.ckpt_id)))
                    torch.save(
                        sample,
                        os.path.join(
                            self.args.image_folder, 'samples_{}.pth'.format(
                                self.config.sampling.ckpt_id)))

            else:
                if self.config.sampling.data_init:
                    data_iter = iter(dataloader)
                    samples, _ = next(data_iter)
                    samples = samples.to(self.config.device)
                    samples = data_transform(self.config, samples)
                    init_samples = samples + sigmas_th[0] * torch.randn_like(
                        samples)

                else:
                    init_samples = torch.rand(self.config.sampling.batch_size,
                                              self.config.data.channels,
                                              self.config.data.image_size,
                                              self.config.data.image_size,
                                              device=self.config.device)
                    init_samples = data_transform(self.config, init_samples)

                all_samples = anneal_Langevin_dynamics(
                    init_samples,
                    score,
                    sigmas,
                    self.config.sampling.n_steps_each,
                    self.config.sampling.step_lr,
                    verbose=True,
                    final_only=self.config.sampling.final_only,
                    denoise=self.config.sampling.denoise)

                if not self.config.sampling.final_only:
                    for i, sample in tqdm.tqdm(enumerate(all_samples),
                                               total=len(all_samples),
                                               desc="saving image samples"):
                        sample = sample.view(sample.shape[0],
                                             self.config.data.channels,
                                             self.config.data.image_size,
                                             self.config.data.image_size)

                        sample = inverse_data_transform(self.config, sample)

                        image_grid = make_grid(
                            sample,
                            int(np.sqrt(self.config.sampling.batch_size)))
                        save_image(
                            image_grid,
                            os.path.join(self.args.image_folder,
                                         'image_grid_{}.png'.format(i)))
                        torch.save(
                            sample,
                            os.path.join(self.args.image_folder,
                                         'samples_{}.pth'.format(i)))
                else:
                    sample = all_samples[-1].view(all_samples[-1].shape[0],
                                                  self.config.data.channels,
                                                  self.config.data.image_size,
                                                  self.config.data.image_size)

                    sample = inverse_data_transform(self.config, sample)

                    image_grid = make_grid(
                        sample, int(np.sqrt(self.config.sampling.batch_size)))
                    save_image(
                        image_grid,
                        os.path.join(
                            self.args.image_folder, 'image_grid_{}.png'.format(
                                self.config.sampling.ckpt_id)))
                    torch.save(
                        sample,
                        os.path.join(
                            self.args.image_folder, 'samples_{}.pth'.format(
                                self.config.sampling.ckpt_id)))

        else:
            total_n_samples = self.config.sampling.num_samples4fid
            n_rounds = total_n_samples // self.config.sampling.batch_size
            if self.config.sampling.data_init:
                dataloader = DataLoader(
                    dataset,
                    batch_size=self.config.sampling.batch_size,
                    shuffle=True,
                    num_workers=4)
                data_iter = iter(dataloader)

            img_id = 0
            for _ in tqdm.tqdm(
                    range(n_rounds),
                    desc=
                    'Generating image samples for FID/inception score evaluation'
            ):
                if self.config.sampling.data_init:
                    try:
                        samples, _ = next(data_iter)
                    except StopIteration:
                        data_iter = iter(dataloader)
                        samples, _ = next(data_iter)
                    samples = samples.to(self.config.device)
                    samples = data_transform(self.config, samples)
                    samples = samples + sigmas_th[0] * torch.randn_like(
                        samples)
                else:
                    samples = torch.rand(self.config.sampling.batch_size,
                                         self.config.data.channels,
                                         self.config.data.image_size,
                                         self.config.data.image_size,
                                         device=self.config.device)
                    samples = data_transform(self.config, samples)

                all_samples = anneal_Langevin_dynamics(
                    samples,
                    score,
                    sigmas,
                    self.config.sampling.n_steps_each,
                    self.config.sampling.step_lr,
                    verbose=False,
                    denoise=self.config.sampling.denoise)

                samples = all_samples[-1]
                for img in samples:
                    img = inverse_data_transform(self.config, img)

                    save_image(
                        img,
                        os.path.join(self.args.image_folder,
                                     'image_{}.png'.format(img_id)))
                    img_id += 1
Example #21
0
    def fast_fid(self):
        ### Test the fids of ensembled checkpoints.
        ### Shouldn't be used for pretrained with ema

        if self.config.ncsn.fast_fid.ensemble:
            if self.config.ncsn.model.ema:
                raise RuntimeError(
                    "Cannot apply ensembling to pretrained with EMA.")
            self.fast_ensemble_fid()
            return

        from ncsn.evaluation.fid_score import get_fid, get_fid_stats_path
        import pickle

        source_dataset, _ = get_dataset(self.args, self.config.source)
        source_dataloader = DataLoader(
            source_dataset,
            batch_size=self.config.ncsn.sampling.sources_per_batch,
            shuffle=True,
            num_workers=self.config.source.data.num_workers)
        source_iter = iter(source_dataloader)

        score = get_scorenet(self.config.ncsn)
        score = torch.nn.DataParallel(score)

        if self.config.compatibility.ckpt_id is None:
            cpat_states = torch.load(os.path.join(
                'scones', self.config.compatibility.log_path,
                'checkpoint.pth'),
                                     map_location=self.config.device)
        else:
            cpat_states = torch.load(os.path.join(
                'scones', self.config.compatibility.log_path,
                f'checkpoint_{self.config.compatibility.ckpt_id}.pth'),
                                     map_location=self.config.device)

        cpat = get_compatibility(self.config)
        cpat.load_state_dict(cpat_states[0])

        sigmas_th = get_sigmas(self.config.ncsn)
        sigmas = sigmas_th.cpu().numpy()

        fids = {}
        for ckpt in tqdm.tqdm(range(self.config.ncsn.fast_fid.begin_ckpt,
                                    self.config.ncsn.fast_fid.end_ckpt + 1,
                                    5000),
                              desc="processing ckpt"):
            states = torch.load(os.path.join(self.args.log_path,
                                             f'checkpoint_{ckpt}.pth'),
                                map_location=self.config.device)

            if self.config.ncsn.model.ema:
                ema_helper = EMAHelper(mu=self.config.ncsn.model.ema_rate)
                ema_helper.register(score)
                ema_helper.load_state_dict(states[-1])
                ema_helper.ema(score)
            else:
                score.load_state_dict(states[0])

            score.eval()

            num_iters = self.config.ncsn.fast_fid.num_samples // self.config.ncsn.fast_fid.batch_size
            output_path = os.path.join(self.args.image_folder,
                                       'ckpt_{}'.format(ckpt))
            os.makedirs(output_path, exist_ok=True)
            for i in range(num_iters):
                try:
                    (Xs, _) = next(source_iter)
                    Xs_global = torch.cat(
                        [Xs] * self.config.ncsn.sampling.samples_per_source,
                        dim=0).to(self.config.device)
                except StopIteration:
                    source_iter = iter(source_dataloader)
                    (Xs, _) = next(source_iter)
                    Xs_global = torch.cat(
                        [Xs] * self.config.ncsn.sampling.samples_per_source,
                        dim=0).to(self.config.device)

                init_samples = torch.rand(self.config.ncsn.fast_fid.batch_size,
                                          self.config.target.data.channels,
                                          self.config.target.data.image_size,
                                          self.config.target.data.image_size,
                                          device=self.config.device)
                init_samples = data_transform(self.config.target, init_samples)
                init_samples.requires_grad = True
                init_samples = init_samples.to(self.config.device)

                all_samples = anneal_Langevin_dynamics(
                    init_samples,
                    Xs_global,
                    score,
                    cpat,
                    sigmas,
                    self.config.ncsn.fast_fid.n_steps_each,
                    self.config.ncsn.fast_fid.step_lr,
                    verbose=self.config.ncsn.fast_fid.verbose,
                    final_only=self.config.ncsn.sampling.final_only,
                    denoise=self.config.ncsn.sampling.denoise)

                final_samples = all_samples[-1]
                for id, sample in enumerate(final_samples):
                    sample = sample.view(self.config.target.data.channels,
                                         self.config.target.data.image_size,
                                         self.config.target.data.image_size)

                    sample = inverse_data_transform(self.config.target, sample)

                    save_image(
                        sample,
                        os.path.join(output_path, 'sample_{}.png'.format(id)))

            stat_path = get_fid_stats_path(self.args,
                                           self.config.ncsn,
                                           download=True)
            fid = get_fid(stat_path, output_path)
            fids[ckpt] = fid
            print("ckpt: {}, fid: {}".format(ckpt, fid))

        with open(os.path.join(self.args.image_folder, 'fids.pickle'),
                  'wb') as handle:
            pickle.dump(fids, handle, protocol=pickle.HIGHEST_PROTOCOL)