with open(args.model_filename + ".params", mode="r") as in_file: params = json.load(in_file) print("-- Loading index") with open(args.model_filename + ".index", mode="rb") as in_file: index = pickle.load(in_file) token2id = index["token2id"] id2token = index["id2token"] label2id = index["label2id"] id2label = index["id2label"] num_tokens = len(token2id) num_labels = len(label2id) print("-- Loading test set") print("-- Loading test set") test_labels, test_padded_sentences, test_img_names, test_original_sentences = load_ic_dataset( args.test_filename, token2id, label2id) print("-- Loading images") image_reader = ImageReader(args.img_names_filename, args.img_features_filename) print("-- Restoring model") sentence_input = tf.placeholder(tf.int32, (None, None), name="sentence_input") img_features_input = tf.placeholder( tf.float32, (None, params["num_img_features"], params["img_features_size"]), name="img_features_input") label_input = tf.placeholder(tf.int32, (None, ), name="label_input") dropout_input = tf.placeholder(tf.float32, name="dropout_input") logits = build_bottom_up_top_down_ic_model(
print("Params saved to: {}".format(args.model_save_filename + ".params")) with open(args.model_save_filename + ".index", mode="wb") as out_file: pickle.dump( { "token2id": token2id, "id2token": id2token, "label2id": label2id, "id2label": id2label }, out_file) print("Index saved to: {}".format(args.model_save_filename + ".index")) print("-- Loading training set") train_labels, train_sentences, _, _ = load_ic_dataset( args.train_filename, token2id, label2id) print("-- Loading development set") dev_labels, dev_sentences, _, _ = load_ic_dataset(args.dev_filename, token2id, label2id) print("-- Building model") sentence_input = tf.placeholder(tf.int32, (None, None), name="sentence_input") label_input = tf.placeholder(tf.int32, (None, ), name="label_input") dropout_input = tf.placeholder(tf.float32, name="dropout_input") logits = build_simple_blind_ic_model(sentence_input, dropout_input, num_tokens, num_labels, embeddings, args.embeddings_size, args.train_embeddings, args.rnn_hidden_size,
with open(args.model_save_filename + ".index", mode="wb") as out_file: pickle.dump( { "token2id": token2id, "id2token": id2token, "vte_label2id": vte_label2id, "vte_id2label": vte_id2label, "ic_label2id": ic_label2id, "ic_id2label": ic_id2label }, out_file) print("Index saved to: {}".format(args.model_save_filename + ".index")) print("-- Loading training set") ic_train_labels, ic_train_sentences, ic_train_img_names, _ = load_ic_dataset( args.ic_train_filename, token2id, ic_label2id) print("-- Loading training set") vte_train_labels, vte_train_premises, vte_train_hypotheses, vte_train_img_names, _, _ =\ load_vte_dataset( args.vte_train_filename, token2id, vte_label2id ) print("-- Loading development set") vte_dev_labels, vte_dev_premises, vte_dev_hypotheses, vte_dev_img_names, _, _ =\ load_vte_dataset( args.vte_dev_filename, token2id, vte_label2id