def run(test_phase, data_seed, n_labeled, training_length, rampdown_length): minibatch_size = 100 n_labeled_per_batch = 100 tf.reset_default_graph() model = Model(RunContext(__file__, data_seed)) cifar = Cifar10ZCA(n_labeled=n_labeled, data_seed=data_seed, test_phase=test_phase) model['flip_horizontally'] = True model['ema_consistency'] = True model['max_consistency_cost'] = 0.0 model['apply_consistency_to_labeled'] = False model['adam_beta_2_during_rampup'] = 0.999 model['ema_decay_during_rampup'] = 0.999 model['normalize_input'] = False # Keep ZCA information model['rampdown_length'] = rampdown_length model['training_length'] = training_length training_batches = minibatching.training_batches(cifar.training, minibatch_size, n_labeled_per_batch) evaluation_batches_fn = minibatching.evaluation_epoch_generator( cifar.evaluation, minibatch_size) tensorboard_dir = model.save_tensorboard_graph() LOG.info("Saved tensorboard graph to %r", tensorboard_dir) model.train(training_batches, evaluation_batches_fn)
def run(result_dir, test_phase, n_labeled, data_seed, model_type): minibatch_size = 100 hyperparams = model_hyperparameters(model_type, n_labeled) tf.reset_default_graph() model = Model(result_dir=result_dir) cifar = Cifar10ZCA(n_labeled=n_labeled, data_seed=data_seed, test_phase=test_phase) model['flip_horizontally'] = True model['ema_consistency'] = hyperparams['ema_consistency'] model['max_consistency_coefficient'] = hyperparams['max_consistency_coefficient'] model['apply_consistency_to_labeled'] = hyperparams['apply_consistency_to_labeled'] model['adam_beta_2_during_rampup'] = 0.999 model['ema_decay_during_rampup'] = 0.999 model['normalize_input'] = False # Keep ZCA information model['rampdown_length'] = 25000 model['training_length'] = 150000 training_batches = minibatching.training_batches(cifar.training, minibatch_size, hyperparams['n_labeled_per_batch']) evaluation_batches_fn = minibatching.evaluation_epoch_generator(cifar.evaluation, minibatch_size) tensorboard_dir = model.save_tensorboard_graph() LOG.info("Saved tensorboard graph to %r", tensorboard_dir) model.train(training_batches, evaluation_batches_fn)
def run(): data_seed = 0 date = datetime.now() n_labeled = 4000 result_dir = "{root}/{dataset}/{model}/{date:%Y-%m-%d_%H:%M:%S}/{seed}".format( root='results/final_eval', dataset='cifar10_{}'.format(n_labeled), model='mean_teacher', date=date, seed=data_seed ) model = Model(result_dir=result_dir) model['flip_horizontally'] = True model['max_consistency_coefficient'] = 100.0 * n_labeled / 50000 model['adam_beta_2_during_rampup'] = 0.999 model['ema_decay_during_rampup'] = 0.999 model['normalize_input'] = False # Keep ZCA information model['rampdown_length'] = 25000 model['training_length'] = 150000 tensorboard_dir = model.save_tensorboard_graph() LOG.info("Saved tensorboard graph to %r", tensorboard_dir) cifar = Cifar10ZCA(data_seed, n_labeled) training_batches = minibatching.training_batches(cifar.training) evaluation_batches_fn = minibatching.evaluation_epoch_generator(cifar.evaluation) model.train(training_batches, evaluation_batches_fn)
def run(data_seed=0): n_labeled = 4000 model = Model(RunContext(__file__, 0)) model['flip_horizontally'] = True model['normalize_input'] = False # Keep ZCA information model['rampdown_length'] = 0 model['rampup_length'] = 5000 model['training_length'] = 40000 model['max_consistency_cost'] = 50.0 tensorboard_dir = model.save_tensorboard_graph() LOG.info("Saved tensorboard graph to %r", tensorboard_dir) cifar = Cifar10ZCA(data_seed, n_labeled) training_batches = minibatching.training_batches(cifar.training, n_labeled_per_batch=50) evaluation_batches_fn = minibatching.evaluation_epoch_generator(cifar.evaluation) model.train(training_batches, evaluation_batches_fn)
def run(): data_seed = 0 n_labeled = 4000 model = Model(RunContext(__file__, 0)) model['flip_horizontally'] = True model['max_consistency_cost'] = 100.0 * n_labeled / 50000 model['adam_beta_2_during_rampup'] = 0.999 model['ema_decay_during_rampup'] = 0.999 model['normalize_input'] = False # Keep ZCA information model['rampdown_length'] = 25000 model['training_length'] = 150000 tensorboard_dir = model.save_tensorboard_graph() LOG.info("Saved tensorboard graph to %r", tensorboard_dir) cifar = Cifar10ZCA(data_seed, n_labeled) training_batches = minibatching.training_batches(cifar.training) evaluation_batches_fn = minibatching.evaluation_epoch_generator( cifar.evaluation) model.train(training_batches, evaluation_batches_fn)