Example #1
0
def main(args):
    transform = getTransforms()

    data_path = args.input_data
    if not os.path.exists(data_path):
        print('ERROR: No dataset named {}'.format(data_path))
        exit(1)

    dataset = EvalDataset(data_path, transform=transform)
    dataloader = torch.utils.data.DataLoader(dataset,
                                             batch_size=1,
                                             shuffle=False,
                                             num_workers=1)

    with open(args.class_list, 'r') as class_file:
        class_names = []
        for class_name in class_file.readlines():
            if len(class_name.strip()) > 0:
                class_names.append(class_name.strip())

    model = ResNet(num_layers=18, num_classes=len(class_names)).to(DEVICE)
    model = model.eval()

    output_dir = os.path.join(data_path, 'out')
    os.makedirs(output_dir, exist_ok=True)

    model_file = args.model_file

    if os.path.exists(model_file):
        checkpoint = torch.load(model_file)
        if 'state_dict' in checkpoint.keys():
            model.load_state_dict(checkpoint['state_dict'], strict=False)
        else:
            model.load_state_dict(checkpoint, strict=False)
        print('=> loaded {}'.format(model_file))

    else:
        print('model_file "{}" does not exists.'.format(model_file))
        exit(1)

    font = cv2.FONT_HERSHEY_SIMPLEX

    with torch.no_grad():
        for data, path in dataloader:
            outputs = model(data.to(DEVICE))
            _, predicted = torch.max(outputs.data, 1)
            predicted = predicted.to('cpu')[0].item()
            class_text = class_names[predicted]
            print(class_text, path)

            image = cv2.imread(path[0], cv2.IMREAD_COLOR)
            image = cv2.rectangle(image, (0, 0), (150, 25), (255, 255, 255),
                                  -1)
            image = cv2.rectangle(image, (0, 0), (150, 25), (255, 0, 0), 2)
            cv2.putText(image, class_text, (5, 15), font, 0.5, (
                255,
                0,
            ), 1, cv2.LINE_AA)
            cv2.imwrite(os.path.join(output_dir, os.path.basename(path[0])),
                        image)
Example #2
0
    criterion = nn.MSELoss()
    optimizer = optim.Adam([{
        'params': model.first_part.parameters()
    }, {
        'params': model.last_part.parameters(),
        'lr': args.lr * 0.1
    }],
                           lr=args.lr)

    train_dataset = TrainDataset(args.train_file)
    train_dataloader = DataLoader(dataset=train_dataset,
                                  batch_size=args.batch_size,
                                  shuffle=True,
                                  num_workers=args.num_workers,
                                  pin_memory=True)
    eval_dataset = EvalDataset(args.eval_file)
    eval_dataloader = DataLoader(dataset=eval_dataset, batch_size=1)

    best_weights = copy.deepcopy(model.state_dict())
    best_epoch = 0
    best_psnr = 0.0

    for epoch in range(args.num_epochs):
        for param_group in optimizer.param_groups:
            param_group['lr'] = args.lr * (0.1**(epoch //
                                                 int(args.num_epochs * 0.8)))

        model.train()
        epoch_losses = AverageMeter()

        with tqdm(total=(len(train_dataset) -
Example #3
0
def main():
    # Load dataset
    print('Loading dataset ...\n')
    #dataset_train = TrainDataset(1000, opt.batchSize, train=True)
    #dataset_val = ValDataset(train=False)
    dataset_train = TrainDataset('train_BSD500.h5', opt.patch_size, int(opt.upscale_factor[0]))
    print(len(dataset_train))
    dataset_val = EvalDataset('test_BSD500.h5')
    loader_train = DataLoader(dataset=dataset_train, num_workers=1, batch_size=opt.batchSize, shuffle=True)
    loader_val = DataLoader(dataset=dataset_val, batch_size=1)
    print("# of training samples: %d\n" % int(len(dataset_train)))
    # Build model
    netG = make_model(opt)
    print('# generator parameters:', sum(param.numel() for param in netG.parameters()))
    #netG.apply(weights_init_kaiming)
#    content_criterion = nn.MSELoss()
    #feature_extractor = FeatureExtractor(torchvision.models.vgg19(pretrained=True))
    content_criterion = nn.L1Loss()
    
    # Move to GPU
    if torch.cuda.is_available():
        netG.cuda()
        content_criterion.cuda()
    
    optim_rdn = optim.Adam(netG.parameters(), lr=opt.generatorLR)
    # Optimizer
    # training
    writer = SummaryWriter(opt.outf)
    step = 0
#    noiseL_B=[0,55] # ingnored when opt.mode=='S'
    
    # Generator Pretraining(Using MSE Loss)
    for epoch in range(opt.epochs):
        mean_generator_content_loss = 0.0
        mean_generator_PSNRs = 0.0
        mean_generator_SSIMs = 0.0
        for param_group in optim_rdn.param_groups:
            param_group['lr'] = opt.generatorLR * (0.1 ** (epoch // int(opt.epochs * 0.8)))
        for i, (lrimg, hrimg) in enumerate(loader_train):
            # adding noise
            for j in range(opt.batchSize):
                #noise = torch.FloatTensor(lrimg[j].size()).normal_(mean=0.0, std=opt.noiseL/255.)
                #lrimg[j] = lrimg[j] + noise
                lrimg[j] = lrimg[j] 
            # Generate real and fake inputs
            if opt.cuda:
                high_res_real = Variable(hrimg.cuda())
                high_res_fake = netG(Variable(lrimg).cuda())
            else:
                high_res_real = Variable(hrimg)
                high_res_fake = netG(Variable(lrimg))
    
            ######### Train generator #########
            netG.zero_grad()
    
            generator_content_loss = content_criterion(high_res_fake, high_res_real)
            mean_generator_content_loss += generator_content_loss.data
    
            generator_content_loss.backward()
            optim_rdn.step()

                        ######### Status and display #########
            sys.stdout.write('\r[%d/%d][%d/%d] Generator_MSE_Loss: %.4f' % (epoch, opt.epochs, i, len(loader_train), generator_content_loss.data))
          #  visualizer.show(low_res, high_res_real.cpu().data, high_res_fake.cpu().data)
            out_train = torch.clamp(high_res_fake, 0., 1.)
            psnr_train, ssim_train = batch_PSNR(out_train, high_res_real, scale=3, data_range=255.0)
            mean_generator_PSNRs += psnr_train
            mean_generator_SSIMs += ssim_train

            if step % 10 == 0:
                # Log the scalar values
                writer.add_scalar('generator_content_loss', generator_content_loss.item(), step)
                #writer.add_scalar('PSNR on training data', psnr_train, step)
                #writer.add_scalar('SSIM on training data', ssim_train, step)
            step += 1   
          #  sys.stdout.write('\r[%d/%d][%d/%d] PSNR: %.4f, SSIM:%.4f' % (epoch, 2, i, len(loader_train), psnr_train, ssim_train))
    
        psnr_avg_train = mean_generator_PSNRs/len(loader_train)
        ssim_avg_train = mean_generator_SSIMs/len(loader_train)
        sys.stdout.write('\r[%d/%d][%d/%d] Generator_MSE_Loss: %.4f\n' % (epoch, opt.epochs, i, len(loader_train), mean_generator_content_loss/len(loader_train)))
        print("\n[epoch %d] PSNR_train: %.4f" % (epoch+1, psnr_avg_train))
        print("\n[epoch %d] SSIM_train: %.4f" % (epoch+1, ssim_avg_train))
        writer.add_scalar('PSNR on training data', psnr_avg_train, epoch)
        writer.add_scalar('SSIM on training data', ssim_avg_train, epoch)
        #log_value('generator_mse_loss', mean_generator_content_loss/len(dataloader), epoch)
        torch.save(netG.state_dict(), '%s/model/rdn_final_%d.pth'%(opt.outf,epoch))

        ## the end of each epoch
        # netG.eval()
        # validate
        psnr_val = 0
        ssim_val = 0.0
        val_images = []
        num = 0
        numofex=opt.noiseL

        for index, (lrimg_val, hrimg_val) in enumerate(loader_val):
            #lrimg_val, hrimg_val = dataset_val[k]
            #noise = torch.FloatTensor(lrimg_val.size()).normal_(mean=0, std=opt.val_noiseL/255.)
            #lrimgn_val = lrimg_val + noise
            lrimgn_val = lrimg_val 
            #lrimgn_val = torch.Tensor(np.expand_dims(lrimgn_val, axis=0))
            #hrimg_val = torch.Tensor(np.expand_dims(hrimg_val, axis=0))
            hrimg_val, lrimg_val = Variable(hrimg_val.cuda(), volatile=True), Variable(lrimgn_val.cuda(), volatile=True)
            out_val = netG(lrimg_val)
            psnr_val_e, ssim_val_e = batch_PSNR(out_val, hrimg_val, scale=3, data_range=255.0)
            psnr_val += psnr_val_e
            ssim_val += ssim_val_e
            hrimg_val = np.transpose(hrimg_val[0].detach().cpu().numpy(), (1,2,0))
            out_val = np.transpose(out_val[0].detach().cpu().numpy(),(1,2,0))
            
            if num<5:
                num+=1
#                hrimg_val = hrimg_val[int(hrimg_val.shape[0] / 2) - 160:int(hrimg_val.shape[0] / 2) + 160,
#                    int(hrimg_val.shape[1] / 2) - 160:int(hrimg_val.shape[1] / 2) + 160]
#                out_val = out_val[int(out_val.shape[0] / 2) - 160:int(out_val.shape[0] / 2) + 160,
#                    int(out_val.shape[1] / 2) - 160:int(out_val.shape[1] / 2) + 160]
                val_images.extend([hrimg_val,out_val])


        output_image=make_grid(val_images,nrow=2,nline=1)
        if not os.path.exists('%s/training_results/%d/' % (opt.outf, numofex)):
            os.makedirs('%s/training_results/%d/' % (opt.outf, numofex))
        save_result(output_image,path='%s/training_results/%d/epoch%d.png' % (opt.outf,numofex,epoch))

        psnr_val /= len(dataset_val)
        ssim_val /= len(dataset_val)
        print("\n[epoch %d] PSNR_val: %.4f" % (epoch+1, psnr_val))
        print("\n[epoch %d] SSIM_val: %.4f" % (epoch+1, ssim_val))
        writer.add_scalar('PSNR on validation data', psnr_val, epoch)
        writer.add_scalar('SSIM on validation data', ssim_val, epoch)
Example #4
0
    def train(self, args):
        with open(args.train_list, 'r') as train_list_file:
            self.train_list = [line.strip() for line in train_list_file.readlines()]
        self.eval_file = args.eval_file
        self.num_train_sentences = args.num_train_sentences
        self.batch_size = args.batch_size
        self.lr = args.lr
        self.max_epoch = args.max_epoch
        self.model_path = args.model_path
        self.log_path = args.log_path
        self.fig_path = args.fig_path
        self.eval_plot_num = args.eval_plot_num
        self.eval_steps = args.eval_steps
        self.resume_model = args.resume_model
        self.wav_path = args.wav_path
        self.train_wav_path = args.train_wav_path
        self.tool_path = args.tool_path

        # create a training dataset and an evaluation dataset
        trainSet = TrainingDataset(self.train_list,
                                   frame_size=self.frame_size,
                                   frame_shift=self.frame_shift)
        evalSet = EvalDataset(self.eval_file,
                              self.num_test_sentences)
        # trainSet = evalSet
        # create data loaders for training and evaluation
        train_loader = DataLoader(trainSet,
                                  batch_size=self.batch_size,
                                  shuffle=True,
                                  num_workers=16,
                                  collate_fn=TrainCollate())

        eval_loader = DataLoader(evalSet,
                                 batch_size=1,
                                 shuffle=False,
                                 num_workers=4,
                                 collate_fn=EvalCollate())

        # create a network
        print('model', self.model_name)
        net = Net(device=self.device, L=self.frame_size, width=self.width)
        # net = torch.nn.DataParallel(net)
        net.to(self.device)
        print('Number of learnable parameters: %d' % numParams(net))
        print(net)

        criterion = mse_loss()
        criterion1 = stftm_loss(device=self.device)
        optimizer = torch.optim.Adam(net.parameters(), lr=self.lr)
        self.lr_list = [0.0002] * 3 + [0.0001] * 6 + [0.00005] * 3 + [0.00001] * 3
        if self.resume_model:
            print('Resume model from "%s"' % self.resume_model)
            checkpoint = Checkpoint()
            checkpoint.load(self.resume_model)
            start_epoch = checkpoint.start_epoch
            start_iter = checkpoint.start_iter
            best_loss = checkpoint.best_loss
            net.load_state_dict(checkpoint.state_dict)
            optimizer.load_state_dict(checkpoint.optimizer)
        else:
            print('Training from scratch.')
            start_epoch = 0
            start_iter = 0
            best_loss = np.inf

        num_train_batches = self.num_train_sentences // self.batch_size
        total_train_batch = self.max_epoch * num_train_batches
        print('num_train_sentences', self.num_train_sentences)
        print('batches_per_epoch', num_train_batches)
        print('total_train_batch', total_train_batch)
        print('batch_size', self.batch_size)
        print('model_name', self.model_name)
        batch_timings = 0.
        counter = int(start_epoch * num_train_batches + start_iter)
        counter1 = 0
        print('counter', counter)
        ttime = 0.
        cnt = 0.
        iteration = 0
        print('best_loss', best_loss)
        for epoch in range(start_epoch, self.max_epoch):
            accu_train_loss = 0.0
            net.train()
            for param_group in optimizer.param_groups:
                param_group['lr'] = self.lr_list[epoch]

            start = timeit.default_timer()
            for i, (features, labels, nframes, feat_size, label_size, get_filename) in enumerate(
                    train_loader):  # features:torch.Size([4, 1, 250, 512])
                iteration += 1
                labels_cpu = labels
                i += start_iter
                features, labels = features.to(self.device), labels.to(self.device)  # torch.Size([4, 1, 250, 512])

                loss_mask = compLossMask(labels, nframes=nframes)

                # forward + backward + optimize
                optimizer.zero_grad()

                outputs = net(features)  # torch.Size([4, 1, 64256])

                feature_maker = Fbank(sample_rate=16000, n_fft=400, n_mels=40)
                loss_fbank = 0

                for t in range(len(get_filename)):
                    reader = h5py.File(get_filename[t], 'r')
                    feature_asr = reader['noisy_raw'][:]
                    label_asr = reader['clean_raw'][:]

                    feat_asr_size = int(feat_size[t][0].item())
                    label_asr_size = int(label_size[t][0].item())

                    output_asr = self.train_asr_forward(feature_asr, net)
                    est_output_asr = output_asr[:feat_asr_size]
                    ideal_labels_asr = label_asr

                    # 保存train的wav
                    est_path = os.path.join(self.train_wav_path, '{}_est.wav'.format(t + 1))
                    ideal_path = os.path.join(self.train_wav_path, '{}_ideal.wav'.format(t + 1))
                    sf.write(est_path, normalize_wav(est_output_asr)[0], self.srate)
                    sf.write(ideal_path, normalize_wav(ideal_labels_asr)[0], self.srate)

                    # read wav
                    est_sig = sb.dataio.dataio.read_audio(est_path).unsqueeze(axis=0).to(self.device)
                    ideal_sig = sb.dataio.dataio.read_audio(ideal_path).unsqueeze(axis=0).to(self.device)
                    est_sig_feats = feature_maker(est_sig)
                    ideal_sig_feats = feature_maker(ideal_sig)

                    # fbank_loss
                    loss_fbank += F.mse_loss(est_sig_feats, ideal_sig_feats, True)

                loss_fbank /= 100 * len(get_filename)
                # print(loss_fbank)
                # loss_fbank = 1 / (1 + math.exp(loss_fbank))

                outputs = outputs[:, :, :labels.shape[-1]]

                loss1 = criterion(outputs, labels, loss_mask, nframes)
                loss2 = criterion1(outputs, labels, loss_mask, nframes)
                # print(loss1)
                # print(loss2)

                # loss = 0.8 * loss1 + 0.2 * loss2
                loss = 0.4 * loss1 + 0.1 * loss2 + 0.5 * loss_fbank

                loss.backward()
                optimizer.step()
                # calculate losses
                running_loss = loss.data.item()
                accu_train_loss += running_loss

                # train-loss show
                summary.add_scalar('Train Loss', accu_train_loss, iteration)

                cnt += 1.
                counter += 1
                counter1 += 1

                del loss, loss_fbank, loss1, loss2, outputs, loss_mask, features, labels
                end = timeit.default_timer()
                curr_time = end - start
                ttime += curr_time
                mtime = ttime / counter1
                print(
                    'iter = {}/{}, epoch = {}/{}, loss = {:.5f}, time/batch = {:.5f}, mtime/batch = {:.5f}'.format(
                        i + 1,
                        num_train_batches, epoch + 1, self.max_epoch, running_loss, curr_time, mtime))
                start = timeit.default_timer()
                if (i + 1) % self.eval_steps == 0:
                    start = timeit.default_timer()

                    avg_train_loss = accu_train_loss / cnt

                    avg_eval_loss = self.validate(net, eval_loader, iteration)

                    net.train()

                    print('Epoch [%d/%d], Iter [%d/%d]  ( TrainLoss: %.4f | EvalLoss: %.4f )' % (
                        epoch + 1, self.max_epoch, i + 1, self.num_train_sentences // self.batch_size,
                        avg_train_loss,
                        avg_eval_loss))

                    is_best = True if avg_eval_loss < best_loss else False
                    best_loss = avg_eval_loss if is_best else best_loss

                    checkpoint = Checkpoint(epoch, i, avg_train_loss, avg_eval_loss, best_loss, net.state_dict(),
                                            optimizer.state_dict())

                    model_name = self.model_name + '_latest.model'
                    best_model = self.model_name + '_best.model'
                    checkpoint.save(is_best, os.path.join(self.model_path, model_name),
                                    os.path.join(self.model_path, best_model))

                    logging(self.log_path, self.model_name + '_loss_log.txt', checkpoint, self.eval_steps)
                    # metric_logging(self.log_path, self.model_name +'_metric_log.txt', epoch+1, [avg_st, avg_sn, avg_pe])
                    accu_train_loss = 0.0
                    cnt = 0.

                    net.train()
                if (i + 1) % num_train_batches == 0:
                    break

        avg_st, avg_sn, avg_pe = self.validate_with_metrics(net, eval_loader)
        net.train()
        print('#' * 50)
        print('')
        print('After {} epoch the performance on validation score is a s follows:'.format(epoch + 1))
        print('')
        print('STOI: {:.4f}'.format(avg_st))
        print('SNR: {:.4f}'.format(avg_sn))
        print('PESQ: {:.4f}'.format(avg_pe))
        for param_group in optimizer.param_groups:
            print('learning_rate', param_group['lr'])
        print('')
        print('#' * 50)
        checkpoint = Checkpoint(epoch, 0, None, None, best_loss, net.state_dict(), optimizer.state_dict())
        checkpoint.save(False, os.path.join(self.model_path, self.model_name + '-{}.model'.format(epoch + 1)),
                        os.path.join(self.model_path, best_model))
        metric_logging(self.log_path, self.model_name + '_metric_log.txt', epoch, [avg_st, avg_sn, avg_pe])
        start_iter = 0.
Example #5
0
    def test(self, args):
        with open(args.test_list, 'r') as test_list_file:
            self.test_list = [line.strip() for line in test_list_file.readlines()]
        self.model_name = args.model_name
        self.model_file = args.model_file
        self.test_mixture_path = args.test_mixture_path
        self.prediction_path = args.prediction_path

        # create a network
        print('model', self.model_name)
        net = Net(device=self.device, L=self.frame_size, width=self.width)
        # net = torch.nn.DataParallel(net)
        net.to(self.device)
        print('Number of learnable parameters: %d' % numParams(net))
        print(net)
        # loss and optimizer
        criterion = mse_loss()
        net.eval()
        print('Load model from "%s"' % self.model_file)
        checkpoint = Checkpoint()
        checkpoint.load(self.model_file)
        net.load_state_dict(checkpoint.state_dict)
        with torch.no_grad():
            for i in range(len(self.test_list)):
                # read the mixture for resynthesis
                filename_input = self.test_list[i].split('/')[-1]
                start1 = timeit.default_timer()
                print('{}/{}, Started working on {}.'.format(i + 1, len(self.test_list), self.test_list[i]))
                print('')
                filename_mix = filename_input.replace('.samp', '_mix.dat')

                filename_s_ideal = filename_input.replace('.samp', '_s_ideal.dat')
                filename_s_est = filename_input.replace('.samp', '_s_est.dat')
                # print(filename_mix)
                # sys.exit()
                f_mix = h5py.File(os.path.join(self.test_mixture_path, filename_mix), 'r')
                f_s_ideal = h5py.File(os.path.join(self.prediction_path, filename_s_ideal), 'w')
                f_s_est = h5py.File(os.path.join(self.prediction_path, filename_s_est), 'w')
                # create a test dataset
                testSet = EvalDataset(os.path.join(self.test_mixture_path, self.test_list[i]),
                                      self.num_test_sentences)

                # create a data loader for test
                test_loader = DataLoader(testSet,
                                         batch_size=1,
                                         shuffle=False,
                                         num_workers=2,
                                         collate_fn=EvalCollate())

                # print '\n[%d/%d] Predict on %s' % (i+1, len(self.test_list), self.test_list[i])

                accu_test_loss = 0.0
                accu_test_nframes = 0

                ttime = 0.
                mtime = 0.
                cnt = 0.
                for k, (mix_raw, cln_raw) in enumerate(test_loader):
                    start = timeit.default_timer()
                    est_s = self.eval_forward(mix_raw, net)
                    est_s = est_s[:mix_raw.size]
                    mix = f_mix[str(k)][:]

                    ideal_s = cln_raw

                    f_s_ideal.create_dataset(str(k), data=ideal_s.astype(np.float32), chunks=True)
                    f_s_est.create_dataset(str(k), data=est_s.astype(np.float32), chunks=True)
                    # compute eval_loss

                    test_loss = np.mean((est_s - ideal_s) ** 2)

                    accu_test_loss += test_loss
                    cnt += 1
                    end = timeit.default_timer()
                    curr_time = end - start
                    ttime += curr_time
                    mtime = ttime / cnt
                    mtime = (mtime * (k) + (end - start)) / (k + 1)
                    print('{}/{}, test_loss = {:.4f}, time/utterance = {:.4f}, '
                          'mtime/utternace = {:.4f}'.format(k + 1, self.num_test_sentences, test_loss, curr_time,
                                                            mtime))

                avg_test_loss = accu_test_loss / cnt
                # bar.update(k,test_loss=avg_test_loss)
                # bar.finish()
                end1 = timeit.default_timer()
                print('********** Finisehe working on {}. time taken = {:.4f} **********'.format(filename_input,
                                                                                                 end1 - start1))
                print('')
                f_mix.close()
                f_s_est.close()
                f_s_ideal.close()
Example #6
0
    torch.manual_seed(args.seed)
    model = CSRCNN(scale_factor=args.scale).to(device)
    criterion =CharbonnierLoss(delta=0.0001)#CharbonnierLoss(delta=0.0001)#HuberLoss(delta=0.9)#nn.L1Loss()# nn.MSELoss()
    optimizer = optim.Adam([
        {'params': model.first_part.parameters(), 'lr': args.lr * 0.1},
        # {'params': model.mid_part.parameters(), 'lr': args.lr * 0.1},
        {'params': model.last_part.parameters(), 'lr': args.lr * 0.1}
    ], lr=args.lr)
    train_dataset = TrainDataset(args.train_file)
    train_dataloader = DataLoader(dataset=train_dataset,
                                  batch_size=args.batch_size,
                                  shuffle=True,
                                  num_workers=args.num_workers,
                                  pin_memory=True,
                                  drop_last=False)#drop_last=False
    eval_dataset = EvalDataset(args.eval_file)
    eval_dataloader = DataLoader(dataset=eval_dataset, batch_size=1)
    eval_dataset1 = EvalDataset(args.eval_file1)
    eval_dataloader1 = DataLoader(dataset=eval_dataset1, batch_size=1)
    eval_dataset2 = EvalDataset(args.eval_file2)
    eval_dataloader2 = DataLoader(dataset=eval_dataset2, batch_size=1)

    best_weights = copy.deepcopy(model.state_dict())
    best_epoch = 0
    best_psnr = 0.0
    epoch_num=range(1,args.num_epochs+1)
    psrn=[]
    loss_num=[]
    psrn_Set14=[]
    psrn_BSD200=[]
    
Example #7
0
def main():
    # Load dataset
    print('Loading dataset ...\n')
    #dataset_train = Dataset(train=True)
    #dataset_val = Dataset(train=False)
    dataset_train = TrainDataset('train_DIV_new.h5', opt.patch_size,
                                 int(opt.upscale_factor[0]))
    dataset_val = EvalDataset('test_DIV.h5')
    loader_train = DataLoader(dataset=dataset_train,
                              num_workers=1,
                              batch_size=opt.batchSize,
                              shuffle=True)
    loader_val = DataLoader(dataset=dataset_val, batch_size=1)
    print("# of training samples: %d\n" % int(len(dataset_train)))
    # Build model
    netG = Generator_RDN(opt)
    print('# generator parameters:',
          sum(param.numel() for param in netG.parameters()))
    netD = Discriminator()
    print('# discriminator parameters:',
          sum(param.numel() for param in netD.parameters()))
    #    net.apply(weights_init_kaiming)
    #    content_criterion = nn.MSELoss()
    #    feature_extractor = FeatureExtractor(torchvision.models.vgg19(pretrained=True))
    content_criterion = nn.L1Loss()
    adversarial_criterion = nn.BCELoss()

    ones_const = Variable(torch.ones(opt.batchSize, 1))
    # Move to GPU
    if torch.cuda.is_available():
        netG.cuda()
        netD.cuda()
        content_criterion.cuda()
        adversarial_criterion.cuda()
        ones_const = ones_const.cuda()


#        feature_extractor.cuda()

    optim_rdn = optim.Adam(netG.parameters(), lr=1e-4)
    # Optimizer
    # training
    writer = SummaryWriter(opt.outf)
    step = 0
    #    noiseL_B=[0,55] # ingnored when opt.mode=='S'

    # Generator Pretraining(Using MSE Loss)
    for epoch in range(10):
        mean_generator_content_loss = 0.0
        for i, (lrimg, hrimg) in enumerate(loader_train):
            # adding noise
            #print(lrimg[-1].shape)
            #print(hrimg[-1].shape)
            #cv2.imshow('win1',lrimg[-1].detach().numpy().transpose((1,2,0)))
            #cv2.imshow('win2',hrimg[-1].detach().numpy().transpose((1,2,0)))
            #cv2.waitKey(0)
            for j in range(opt.batchSize):
                noise = torch.FloatTensor(lrimg[j].size()).normal_(
                    mean=0.0, std=opt.noiseL / 255.)
                #lrimg[j] = lrimg[j] + noise
                lrimg[j] = lrimg[j]
            # Generate real and fake inputs
            if opt.cuda:
                high_res_real = Variable(hrimg.cuda())
                high_res_fake = netG(Variable(lrimg).cuda())
            else:
                high_res_real = Variable(hrimg)
                high_res_fake = netG(Variable(lrimg))

            ######### Train generator #########
            netG.zero_grad()

            generator_content_loss = content_criterion(high_res_fake,
                                                       high_res_real)
            mean_generator_content_loss += generator_content_loss.data

            generator_content_loss.backward()
            optim_rdn.step()

            ######### Status and display #########
            #  sys.stdout.write('\r[%d/%d][%d/%d] Generator_MSE_Loss: %.4f' % (epoch, 2, i, len(loader_train), generator_content_loss.data))
            #  visualizer.show(low_res, high_res_real.cpu().data, high_res_fake.cpu().data)
            out_train = torch.clamp(high_res_fake, 0., 1.)
            psnr_train, ssim_train = batch_PSNR(out_train,
                                                high_res_real,
                                                scale=3.0,
                                                data_range=1.)
            if step % 10 == 0:
                # Log the scalar values
                writer.add_scalar('generator_content_loss',
                                  generator_content_loss.item(), step)
                writer.add_scalar('PSNR on training data', psnr_train, step)
            step += 1
        #  sys.stdout.write('\r[%d/%d][%d/%d] PSNR: %.4f, SSIM:%.4f' % (epoch, 2, i, len(loader_train), psnr_train, ssim_train))

        sys.stdout.write('\r[%d/%d][%d/%d] Generator_MSE_Loss: %.4f\n' %
                         (epoch, 2, i, len(loader_train),
                          mean_generator_content_loss / len(loader_train)))
        #log_value('generator_mse_loss', mean_generator_content_loss/len(dataloader), epoch)

    # Do checkpointing
    torch.save(netG.state_dict(), '%s/model/generator_pretrain.pth' % opt.outf)

    #SRGAN-RDN training
    optim_generator = optim.Adam(netG.parameters(), lr=opt.generatorLR)
    optim_discriminator = optim.Adam(netD.parameters(), lr=opt.discriminatorLR)
    scheduler_dis = torch.optim.lr_scheduler.StepLR(optim_discriminator, 50,
                                                    0.1)
    scheduler_gen = torch.optim.lr_scheduler.StepLR(optim_generator, 50, 0.1)
    print('SRGAN training')
    step_new = 0
    for epoch in range(opt.epochs):
        mean_generator_content_loss = 0.0
        mean_generator_adversarial_loss = 0.0
        mean_generator_total_loss = 0.0
        mean_discriminator_loss = 0.0

        netG.train()
        scheduler_gen.step()
        scheduler_dis.step()
        for i, (lrimg, hrimg) in enumerate(loader_train):

            #print(lrimg[-1].shape)
            #print(hrimg[-1].shape)
            #cv2.imshow('win1',lrimg[-1].detach().numpy().transpose((1,2,0)))
            #cv2.imshow('win2',hrimg[-1].detach().numpy().transpose((1,2,0)))
            #cv2.waitKey(0)

            for j in range(opt.batchSize):
                noise = torch.FloatTensor(lrimg[j].size()).normal_(
                    mean=0, std=opt.noiseL / 255.)
                #lrimg[j] = lrimg[j] + noise
                lrimg[j] = lrimg[j]

            # Generate real and fake inputs
            if opt.cuda:
                high_res_real = Variable(hrimg.cuda())
                high_res_fake = netG(Variable(lrimg).cuda())
                target_real = Variable(
                    torch.rand(opt.batchSize, 1) * 0.5 + 0.7).cuda()
                target_fake = Variable(torch.rand(opt.batchSize, 1) *
                                       0.3).cuda()
            else:
                high_res_real = Variable(hrimg)
                high_res_fake = netG(Variable(lrimg))
                target_real = Variable(
                    torch.rand(opt.batchSize, 1) * 0.5 + 0.7)
                target_fake = Variable(torch.rand(opt.batchSize, 1) * 0.3)

            ######### Train discriminator #########
            netD.zero_grad()

            discriminator_loss = adversarial_criterion(netD(high_res_real), target_real) + \
                                 adversarial_criterion(netD(Variable(high_res_fake.data)), target_fake)
            mean_discriminator_loss += discriminator_loss.data

            discriminator_loss.backward()
            optim_discriminator.step()

            ######### Train generator #########
            netG.zero_grad()

            #real_features = Variable(feature_extractor(high_res_real).data)
            #fake_features = feature_extractor(high_res_fake)

            generator_content_loss = content_criterion(
                high_res_fake, high_res_real
            )  #+ 0.006*content_criterion(fake_features, real_features)
            mean_generator_content_loss += generator_content_loss.data
            generator_adversarial_loss = adversarial_criterion(
                netD(high_res_fake), ones_const)
            mean_generator_adversarial_loss += generator_adversarial_loss.data

            generator_total_loss = generator_content_loss + 1e-3 * generator_adversarial_loss
            mean_generator_total_loss += generator_total_loss.data

            generator_total_loss.backward()
            optim_generator.step()

            ######### Status and display #########
            sys.stdout.write(
                '\r[%d/%d][%d/%d] Discriminator_Loss: %.4f Generator_Loss (Content/Advers/Total): %.4f/%.4f/%.4f'
                % (epoch, opt.epochs, i, len(loader_train),
                   discriminator_loss.data, generator_content_loss.data,
                   generator_adversarial_loss.data, generator_total_loss.data))
            #            visualizer.show(low_res, high_res_real.cpu().data, high_res_fake.cpu().data)
            out_train = torch.clamp(high_res_fake, 0., 1.)
            psnr_train, ssim_train = batch_PSNR(out_train,
                                                high_res_real,
                                                scale=3.0,
                                                data_range=1.)
            if step_new % 10 == 0:
                # Log the scalar values
                writer.add_scalar('generator_content_loss',
                                  generator_content_loss.item(), step)
                writer.add_scalar('PSNR on training data', psnr_train, step)
                writer.add_scalar('discriminator_loss',
                                  discriminator_loss.data, step_new)
                writer.add_scalar('generator_adversarial_loss',
                                  generator_adversarial_loss.item(), step_new)
                writer.add_scalar('generator_total_loss', generator_total_loss,
                                  step_new)

            step += 1
            step_new += 1
        sys.stdout.write(
            '\r[%d/%d][%d/%d] Discriminator_Loss: %.4f Generator_Loss (Content/Advers/Total): %.4f/%.4f/%.4f\n'
            %
            (epoch, opt.epochs, i, len(loader_train), mean_discriminator_loss /
             len(loader_train), mean_generator_content_loss /
             len(loader_train), mean_generator_adversarial_loss /
             len(loader_train), mean_generator_total_loss / len(loader_train)))

        # Do checkpointing
        torch.save(netG.state_dict(),
                   '%s/model/generator_final_%d.pth' % (opt.outf, epoch))
        torch.save(netD.state_dict(),
                   '%s/model/discriminator_final%d.pth' % (opt.outf, epoch))

        ## the end of each epoch
        netG.eval()
        # validate
        psnr_val = 0
        ssim_val = 0.0
        val_images = []
        num = 0
        numofex = opt.noiseL

        for index, (lrimg_val, hrimg_val) in enumerate(loader_val):
            #lrimg_val, hrimg_val = dataset_val[k]
            noise = torch.FloatTensor(lrimg_val.size()).normal_(
                mean=0, std=opt.val_noiseL / 255.)
            #lrimgn_val = lrimg_val + noise
            lrimgn_val = lrimg_val
            #lrimgn_val = torch.Tensor(np.expand_dims(lrimgn_val, axis=0))
            #hrimg_val = torch.Tensor(np.expand_dims(hrimg_val, axis=0))
            #lrimg_val = lrimg_val + noise
            hrimg_val, lrimgn_val = Variable(
                hrimg_val.cuda(), volatile=True), Variable(lrimgn_val.cuda(),
                                                           volatile=True)
            #print(lrimgn_val[-1].shape)
            #print(hrimg_val[-1].shape)
            #cv2.imshow('win1', lrimgn_val[-1].detach().cpu().numpy().transpose((1,2,0)))
            #cv2.imshow('win2', hrimg_val[-1].detach().cpu().numpy().transpose((1,2,0)))
            #cv2.waitKey(0)

            out_val = netG(lrimgn_val)
            psnr_val_e, ssim_val_e = batch_PSNR(out_val,
                                                hrimg_val,
                                                scale=3.0,
                                                data_range=1.)
            psnr_val += psnr_val_e
            ssim_val += ssim_val_e
            hrimg_val = np.transpose(hrimg_val[0].detach().cpu().numpy(),
                                     (1, 2, 0))
            out_val = np.transpose(out_val[0].detach().cpu().numpy(),
                                   (1, 2, 0))

            if num < 5:
                num += 1
                #                hrimg_val = hrimg_val[int(hrimg_val.shape[0] / 2) - 160:int(hrimg_val.shape[0] / 2) + 160,
                #                    int(hrimg_val.shape[1] / 2) - 160:int(hrimg_val.shape[1] / 2) + 160]
                #                out_val = out_val[int(out_val.shape[0] / 2) - 160:int(out_val.shape[0] / 2) + 160,
                #                    int(out_val.shape[1] / 2) - 160:int(out_val.shape[1] / 2) + 160]
                val_images.extend([hrimg_val, out_val])

        output_image = make_grid(val_images, nrow=2, nline=1)
        if not os.path.exists('%s/training_results/%d/' % (opt.outf, numofex)):
            os.makedirs('%s/training_results/%d/' % (opt.outf, numofex))
        save_result(output_image,
                    path='%s/training_results/%d/epoch%d.png' %
                    (opt.outf, numofex, epoch))

        psnr_val /= len(dataset_val)
        ssim_val /= len(dataset_val)
        print("\n[epoch %d] PSNR_val: %.4f" % (epoch + 1, psnr_val))
        print("\n[epoch %d] SSIM_val: %.4f" % (epoch + 1, ssim_val))
        writer.add_scalar('PSNR on validation data', psnr_val, epoch)
        writer.add_scalar('SSIM on validation data', ssim_val, epoch)
Example #8
0
# Load model checkpoint that is to be evaluated
checkpoint = torch.load(checkpoint)
model = checkpoint['model']
model = model.to(device)

# Switch to eval mode
model.eval()

# Load test data
test_dataset = PascalVOCDataset(data_folder,
                                split='test',
                                keep_difficult=keep_difficult)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=False,
                                          collate_fn=test_dataset.collate_fn, num_workers=workers, pin_memory=True)

eval_dataset = EvalDataset()
eval_loader = torch.utils.data.DataLoader(eval_dataset, batch_size = 1, shuffle=False,
                                         collate_fn = eval_dataset.collate_fn, num_workers = 1, pin_memory=True)

def evaluate_new(loader, model):
    model.eval()
    
    with torch.no_grad():
        for i, images in enumerate(tqdm(eval_loader, desc='Evaluating')):
            images = images.to(device)  # (N, 3, 300, 300)
            predicted_locs, predicted_scores = model(images)
            det_boxes_batch, det_labels_batch, det_scores_batch = model.detect_objects(predicted_locs, predicted_scores,
                                                                                       min_score=0.01, max_overlap=0.45,
                                                                                       top_k=200)
            print(i, images)
            print(det_boxes_batch, det_labels_batch, det_scores_batch)
                    pth_path = './checkpoint/' + str(network) + '/x' + str(
                        scale) + '/best.pth'
                    print('Loading weights:', pth_path)

                    checkpoint = torch.load(pth_path)
                    model.load_state_dict(checkpoint)

                    # model_dict = model.state_dict()
                    # pretrained_dict = checkpoint
                    # pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
                    # model_dict.update(pretrained_dict)
                    # model.load_state_dict(model_dict)

                eval_file_ = "./h5file_" + datasetfortest + "_x" + str(
                    scale) + "_test"
                eval_dataset = EvalDataset(eval_file_)
                eval_dataloader = DataLoader(dataset=eval_dataset,
                                             batch_size=1)

                model.eval()
                epoch_psnr = AverageMeter()
                epoch_ssim = AverageMeter()

                for data in eval_dataloader:
                    inputs, labels = data
                    if network == "SRCNN":
                        import torch.nn.functional as F

                        inputs = F.interpolate(inputs,
                                               scale_factor=opt.scale,
                                               mode='bilinear')
Example #10
0
    def train(self, args):
        with open(args.train_list, 'r') as train_list_file:
            self.train_list = [
                line.strip() for line in train_list_file.readlines()
            ]
        self.eval_file = args.eval_file
        self.num_train_sentences = args.num_train_sentences
        self.batch_size = args.batch_size
        self.lr = args.lr
        self.max_epoch = args.max_epoch
        self.model_path = args.model_path
        self.log_path = args.log_path
        self.fig_path = args.fig_path
        self.eval_plot_num = args.eval_plot_num
        self.eval_steps = args.eval_steps
        self.resume_model = args.resume_model
        self.wav_path = args.wav_path
        self.tool_path = args.tool_path

        # create a training dataset and an evaluation dataset
        trainSet = TrainingDataset(self.train_list,
                                   frame_size=self.frame_size,
                                   frame_shift=self.frame_shift)
        evalSet = EvalDataset(self.eval_file, self.num_test_sentences)
        #trainSet = evalSet
        # create data loaders for training and evaluation
        train_loader = DataLoader(trainSet,
                                  batch_size=self.batch_size,
                                  shuffle=True,
                                  num_workers=16,
                                  collate_fn=TrainCollate())
        eval_loader = DataLoader(evalSet,
                                 batch_size=1,
                                 shuffle=False,
                                 num_workers=4,
                                 collate_fn=EvalCollate())

        # create a network
        print('model', self.model_name)
        net = Net(device=self.device, L=self.frame_size, width=self.width)
        #net = torch.nn.DataParallel(net)
        net.to(self.device)
        print('Number of learnable parameters: %d' % numParams(net))
        print(net)

        criterion = mse_loss()
        criterion1 = stftm_loss(device=self.device)
        optimizer = torch.optim.Adam(net.parameters(), lr=self.lr)
        self.lr_list = [0.0002] * 3 + [0.0001] * 6 + [0.00005] * 3 + [0.00001
                                                                      ] * 3
        if self.resume_model:
            print('Resume model from "%s"' % self.resume_model)
            checkpoint = Checkpoint()
            checkpoint.load(self.resume_model)
            start_epoch = checkpoint.start_epoch
            start_iter = checkpoint.start_iter
            best_loss = checkpoint.best_loss
            net.load_state_dict(checkpoint.state_dict)
            optimizer.load_state_dict(checkpoint.optimizer)
        else:
            print('Training from scratch.')
            start_epoch = 0
            start_iter = 0
            best_loss = np.inf

        num_train_batches = self.num_train_sentences // self.batch_size
        total_train_batch = self.max_epoch * num_train_batches
        print('num_train_sentences', self.num_train_sentences)
        print('batches_per_epoch', num_train_batches)
        print('total_train_batch', total_train_batch)
        print('batch_size', self.batch_size)
        print('model_name', self.model_name)
        batch_timings = 0.
        counter = int(start_epoch * num_train_batches + start_iter)
        counter1 = 0
        print('counter', counter)
        ttime = 0.
        cnt = 0.
        print('best_loss', best_loss)
        for epoch in range(start_epoch, self.max_epoch):
            accu_train_loss = 0.0
            net.train()
            for param_group in optimizer.param_groups:
                param_group['lr'] = self.lr_list[epoch]

            start = timeit.default_timer()
            for i, (features, labels, nframes) in enumerate(train_loader):
                i += start_iter
                features, labels = features.to(self.device), labels.to(
                    self.device)

                loss_mask = compLossMask(labels, nframes=nframes)

                # forward + backward + optimize
                optimizer.zero_grad()

                outputs = net(features)
                outputs = outputs[:, :, :labels.shape[-1]]

                loss1 = criterion(outputs, labels, loss_mask, nframes)
                loss2 = criterion1(outputs, labels, loss_mask, nframes)

                loss = 0.8 * loss1 + 0.2 * loss2
                loss.backward()
                optimizer.step()
                # calculate losses
                running_loss = loss.data.item()
                accu_train_loss += running_loss

                cnt += 1.
                counter += 1
                counter1 += 1

                del loss, loss1, loss2, outputs, loss_mask, features, labels
                end = timeit.default_timer()
                curr_time = end - start
                ttime += curr_time
                mtime = ttime / counter1
                print(
                    'iter = {}/{}, epoch = {}/{}, loss = {:.5f}, time/batch = {:.5f}, mtime/batch = {:.5f}'
                    .format(i + 1, num_train_batches, epoch + 1,
                            self.max_epoch, running_loss, curr_time, mtime))
                start = timeit.default_timer()
                if (i + 1) % self.eval_steps == 0:
                    start = timeit.default_timer()

                    avg_train_loss = accu_train_loss / cnt

                    avg_eval_loss = self.validate(net, eval_loader)

                    net.train()

                    print(
                        'Epoch [%d/%d], Iter [%d/%d]  ( TrainLoss: %.4f | EvalLoss: %.4f )'
                        % (epoch + 1, self.max_epoch, i + 1,
                           self.num_train_sentences // self.batch_size,
                           avg_train_loss, avg_eval_loss))

                    is_best = True if avg_eval_loss < best_loss else False
                    best_loss = avg_eval_loss if is_best else best_loss

                    checkpoint = Checkpoint(epoch, i, avg_train_loss,
                                            avg_eval_loss, best_loss,
                                            net.state_dict(),
                                            optimizer.state_dict())

                    model_name = self.model_name + '_latest.model'
                    best_model = self.model_name + '_best.model'
                    checkpoint.save(is_best,
                                    os.path.join(self.model_path, model_name),
                                    os.path.join(self.model_path, best_model))

                    logging(self.log_path, self.model_name + '_loss_log.txt',
                            checkpoint, self.eval_steps)
                    #metric_logging(self.log_path, self.model_name +'_metric_log.txt', epoch+1, [avg_st, avg_sn, avg_pe])
                    accu_train_loss = 0.0
                    cnt = 0.

                    net.train()
                if (i + 1) % num_train_batches == 0:
                    break

            avg_st, avg_sn, avg_pe = self.validate_with_metrics(
                net, eval_loader)
            net.train()
            print('#' * 50)
            print('')
            print(
                'After {} epoch the performance on validation score is a s follows:'
                .format(epoch + 1))
            print('')
            print('STOI: {:.4f}'.format(avg_st))
            print('SNR: {:.4f}'.format(avg_sn))
            print('PESQ: {:.4f}'.format(avg_pe))
            for param_group in optimizer.param_groups:
                print('learning_rate', param_group['lr'])
            print('')
            print('#' * 50)
            checkpoint = Checkpoint(epoch, 0, None, None, best_loss,
                                    net.state_dict(), optimizer.state_dict())
            checkpoint.save(
                False,
                os.path.join(self.model_path,
                             self.model_name + '-{}.model'.format(epoch + 1)),
                os.path.join(self.model_path, best_model))
            metric_logging(self.log_path, self.model_name + '_metric_log.txt',
                           epoch, [avg_st, avg_sn, avg_pe])
            start_iter = 0.
Example #11
0
def main(args):
    assert torch.cuda.is_available(), 'CUDA is not available.'
    torch.backends.cudnn.enabled = True
    torch.backends.cudnn.benchmark = True
    torch.set_num_threads(args.workers)
    print('Training Base Detector : prepare_seed : {:}'.format(args.rand_seed))
    prepare_seed(args.rand_seed)

    logger = prepare_logger(args)

    checkpoint = load_checkpoint(args.init_model)
    xargs = checkpoint['args']
    logger.log('Previous args : {:}'.format(xargs))

    # General Data Augmentation
    if xargs.use_gray == False:
        mean_fill = tuple([int(x * 255) for x in [0.485, 0.456, 0.406]])
        normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                         std=[0.229, 0.224, 0.225])
    else:
        mean_fill = (0.5, )
        normalize = transforms.Normalize(mean=[mean_fill[0]], std=[0.5])
    eval_transform  = transforms.Compose2V([transforms.ToTensor(), normalize, \
                                                transforms.PreCrop(xargs.pre_crop_expand), \
                                                transforms.CenterCrop(xargs.crop_max)])

    # Model Configure Load
    model_config = load_configure(xargs.model_config, logger)
    shape = (xargs.height, xargs.width)
    logger.log('--> {:}\n--> Sigma : {:}, Shape : {:}'.format(
        model_config, xargs.sigma, shape))

    # Evaluation Dataloader
    eval_loaders = []
    if args.eval_ilists is not None:
        for eval_ilist in args.eval_ilists:
            eval_idata = EvalDataset(eval_transform, xargs.sigma,
                                     model_config.downsample,
                                     xargs.heatmap_type, shape, xargs.use_gray,
                                     xargs.data_indicator)
            eval_idata.load_list(eval_ilist, args.num_pts, xargs.boxindicator,
                                 xargs.normalizeL, True)
            eval_iloader = torch.utils.data.DataLoader(
                eval_idata,
                batch_size=args.batch_size,
                shuffle=False,
                num_workers=args.workers,
                pin_memory=True)
            eval_loaders.append((eval_iloader, False))
    if args.eval_vlists is not None:
        for eval_vlist in args.eval_vlists:
            eval_vdata = EvalDataset(eval_transform, xargs.sigma,
                                     model_config.downsample,
                                     xargs.heatmap_type, shape, xargs.use_gray,
                                     xargs.data_indicator)
            eval_vdata.load_list(eval_vlist, args.num_pts, xargs.boxindicator,
                                 xargs.normalizeL, True)
            eval_vloader = torch.utils.data.DataLoader(
                eval_vdata,
                batch_size=args.batch_size,
                shuffle=False,
                num_workers=args.workers,
                pin_memory=True)
            eval_loaders.append((eval_vloader, True))

    # define the detector
    detector = obtain_pro_model(model_config, xargs.num_pts, xargs.sigma,
                                xargs.use_gray)
    assert model_config.downsample == detector.downsample, 'downsample is not correct : {:} vs {:}'.format(
        model_config.downsample, detector.downsample)
    logger.log("=> detector :\n {:}".format(detector))
    logger.log("=> Net-Parameters : {:} MB".format(
        count_parameters_in_MB(detector)))
    logger.log('=> Eval-Transform : {:}'.format(eval_transform))

    detector = detector.cuda()
    net = torch.nn.DataParallel(detector)
    net.eval()
    net.load_state_dict(checkpoint['detector'])
    cpu = torch.device('cpu')

    assert len(args.use_stable) == 2

    for iLOADER, (loader, is_video) in enumerate(eval_loaders):
        logger.log(
            '{:} The [{:2d}/{:2d}]-th test set [{:}] = {:} with {:} batches.'.
            format(time_string(), iLOADER, len(eval_loaders),
                   'video' if is_video else 'image', loader.dataset,
                   len(loader)))
        with torch.no_grad():
            all_points, all_results, all_image_ps = [], [], []
            for i, (inputs, targets, masks, normpoints, transthetas,
                    image_index, nopoints, shapes) in enumerate(loader):
                image_index = image_index.squeeze(1).tolist()
                (batch_size, C, H, W), num_pts = inputs.size(), xargs.num_pts
                # batch_heatmaps is a list for stage-predictions, each element should be [Batch, C, H, W]
                if xargs.procedure == 'heatmap':
                    batch_features, batch_heatmaps, batch_locs, batch_scos = net(
                        inputs)
                    batch_locs = batch_locs[:, :-1, :]
                else:
                    batch_locs = net(inputs)
                batch_locs = batch_locs.detach().to(cpu)
                # evaluate the training data
                for ibatch, (imgidx,
                             nopoint) in enumerate(zip(image_index, nopoints)):
                    if xargs.procedure == 'heatmap':
                        norm_locs = normalize_points(
                            (H, W), batch_locs[ibatch].transpose(1, 0))
                        norm_locs = torch.cat(
                            (norm_locs, torch.ones(1, num_pts)), dim=0)
                    else:
                        norm_locs = torch.cat((batch_locs[ibatch].permute(
                            1, 0), torch.ones(1, num_pts)),
                                              dim=0)
                    transtheta = transthetas[ibatch][:2, :]
                    norm_locs = torch.mm(transtheta, norm_locs)
                    real_locs = denormalize_points(shapes[ibatch].tolist(),
                                                   norm_locs)
                    #real_locs  = torch.cat((real_locs, batch_scos[ibatch].permute(1,0)), dim=0)
                    real_locs = torch.cat((real_locs, torch.ones(1, num_pts)),
                                          dim=0)
                    xpoints = loader.dataset.labels[imgidx].get_points().numpy(
                    )
                    image_path = loader.dataset.datas[imgidx]
                    # put into the list
                    all_points.append(torch.from_numpy(xpoints))
                    all_results.append(real_locs)
                    all_image_ps.append(image_path)
            total = len(all_points)
            logger.log(
                '{:} The [{:2d}/{:2d}]-th test set finishes evaluation : {:} frames/images'
                .format(time_string(), iLOADER, len(eval_loaders), total))
        """
    if args.use_stable[0] > 0:
      save_dir = Path( osp.join(args.save_path, '{:}-X-{:03d}'.format(args.model_name, iLOADER)) )
      save_dir.mkdir(parents=True, exist_ok=True)
      wrap_parallel = WrapParallel(save_dir, all_image_ps, all_results, all_points, 180, (255, 0, 0))
      wrap_loader   = torch.utils.data.DataLoader(wrap_parallel, batch_size=args.workers, shuffle=False, num_workers=args.workers, pin_memory=True)
      for iL, INDEXES in enumerate(wrap_loader): _ = INDEXES
      cmd = 'ffmpeg -y -i {:}/%06d.png -framerate 30 {:}.avi'.format(save_dir, save_dir)
      logger.log('{:} possible >>>>> : {:}'.format(time_string(), cmd))
      os.system( cmd )

    if args.use_stable[1] > 0:
      save_dir = Path( osp.join(args.save_path, '{:}-Y-{:03d}'.format(args.model_name, iLOADER)) )
      save_dir.mkdir(parents=True, exist_ok=True)
      Xpredictions, Xgts = torch.stack(all_results), torch.stack(all_points)
      new_preds = fc_solve(Xgts, Xpredictions, is_cuda=True)
      wrap_parallel = WrapParallel(save_dir, all_image_ps, new_preds, all_points, 180, (0, 0, 255))
      wrap_loader   = torch.utils.data.DataLoader(wrap_parallel, batch_size=args.workers, shuffle=False, num_workers=args.workers, pin_memory=True)
      for iL, INDEXES in enumerate(wrap_loader): _ = INDEXES
      cmd = 'ffmpeg -y -i {:}/%06d.png -framerate 30 {:}.avi'.format(save_dir, save_dir)
      logger.log('{:} possible >>>>> : {:}'.format(time_string(), cmd))
      os.system( cmd )
    """
        Xpredictions, Xgts = torch.stack(all_results), torch.stack(all_points)
        save_path = Path(
            osp.join(args.save_path,
                     '{:}-result-{:03d}.pth'.format(args.model_name, iLOADER)))
        torch.save(
            {
                'paths': all_image_ps,
                'ground-truths': Xgts,
                'predictions': all_results
            }, save_path)
        logger.log('{:} save into {:}'.format(time_string(), save_path))
        if False:
            new_preds = fc_solve_v2(Xgts, Xpredictions, is_cuda=True)
            # create the dir
            save_dir = Path(
                osp.join(args.save_path,
                         '{:}-T-{:03d}'.format(args.model_name, iLOADER)))
            save_dir.mkdir(parents=True, exist_ok=True)
            wrap_parallel = WrapParallelV2(save_dir, all_image_ps, Xgts,
                                           all_results, new_preds, all_points,
                                           180, [args.model_name, 'SRT'])
            wrap_parallel[0]
            wrap_loader = torch.utils.data.DataLoader(wrap_parallel,
                                                      batch_size=args.workers,
                                                      shuffle=False,
                                                      num_workers=args.workers,
                                                      pin_memory=True)
            for iL, INDEXES in enumerate(wrap_loader):
                _ = INDEXES
            cmd = 'ffmpeg -y -i {:}/%06d.png -vb 5000k {:}.avi'.format(
                save_dir, save_dir)
            logger.log('{:} possible >>>>> : {:}'.format(time_string(), cmd))
            os.system(cmd)

    logger.close()
    return
    # my_lr_scheduler = lr_scheduler.CosineAnnealingLR(optimizer, T_max=4500/opt.batch_size*opt.num_epochs,eta_min=0.000001)

    my_lr_scheduler = lr_scheduler.StepLR(optimizer,
                                          step_size=int(4000 / opt.batch_size *
                                                        200),
                                          gamma=0.5)

    train_dataset = TrainDataset(opt.train_file,
                                 patch_size=opt.patch_size,
                                 scale=opt.scale)
    train_dataloader = DataLoader(dataset=train_dataset,
                                  batch_size=opt.batch_size,
                                  shuffle=True,
                                  num_workers=opt.num_workers,
                                  pin_memory=True)
    eval_dataset = EvalDataset(opt.eval_file)
    eval_dataloader = DataLoader(dataset=eval_dataset, batch_size=1)

    best_weights = copy.deepcopy(model.state_dict())
    best_epoch = 0
    best_psnr = 0.0

    for epoch in range(opt.num_epochs):
        for param_group in optimizer.param_groups:
            param_group['lr'] = opt.lr * (0.1**(epoch //
                                                int(opt.num_epochs * 0.8)))

        model.train()
        epoch_losses = AverageMeter()

        with tqdm(total=(len(train_dataset) -