Example #1
0
def _compute_distance(df, x, y, p, x_range, y_range, as_series=False):
    """
    Compute an array of Hilbert distances from a pandas dataframe

    Parameters
    ----------
    df: pd.DataFrame
        pandas dataframe containing the coordinate columns
    x
        Label of the column containing the x-coordinates
    y
        Label of the column containing the y-coordinates
    p: int
        Hilbert-curve p value
    x_range: tuple
        Start (x_range[0]) and stop (x_range[1]) range of Hilbert x
        scale in data coordinates
    y_range: tuple
        Start (y_range[0]) and stop (y_range[1]) range of Hilbert y
        scale in data coordinates
    as_series: bool (default False)
        Whether to return results as a pandas series with index matching df

    Returns
    -------
    np.ndarray
        Of Hilbert distances
    """
    side_length = 2**p
    x_coords = _data2coord(df[x], x_range, side_length)
    y_coords = _data2coord(df[y], y_range, side_length)
    res = hc.distance_from_coordinates(p, x_coords, y_coords)
    if as_series:
        res = pd.Series(res, index=df.index)
    return res
Example #2
0
def _build_distance_grid(p):
    """
    Build a (2 ** p) x (2 ** p) array containing the Hilbert distance of
    each discrete location in the grid

    Parameters
    ----------
    p: int
        Hilbert curve order

    Returns
    -------
    np.ndarray
        2D array containing the Hilbert curve distances for a curve with
        order p
    """
    side_length = int(2**p)
    distance_grid = np.zeros((side_length, side_length), dtype=np.int64)
    for i in range(side_length):
        for j in range(side_length):
            distance_grid[i, j] = (hc.distance_from_coordinates(p, i, j))
    return distance_grid