Printing(after_epoch=True) ]) main_loop.run() # Save the main loop if save_location is not None: logger.info('Saving the main loop...') dump_manager = MainLoopDumpManager(save_location) dump_manager.dump(main_loop) logger.info('Saved') if __name__ == "__main__": train_ex = 100 r_dim = 50 # Build model cost, error_rate = construct_model(Tanh(), r_dim, 30, 2) # Build datastream train_stream = prepare_data( "ARCENE", "train", LogregOrderTransposeIt(10, True, 'model_param/logreg_param.pkl', 500)) # Train the model train_model(cost, error_rate, train_stream, load_location=None, save_location=None)
Printing(every_n_epochs=1*config.pt_freq, after_epoch=False), Plot(document='tr_'+model_name+'_'+config.param_desc, channels=[['train_cost', 'train_cost_reg', 'valid_cost'], ['train_ber', 'train_ber_reg', 'valid_ber']], server_url='http://eos21:4201', every_n_epochs=1*config.pt_freq, after_epoch=False), FinishAfter(every_n_epochs=10000) ] ) main_loop.run() if __name__ == "__main__": # Build datastream ref_data, train_stream, valid_stream, test_stream = prepare_data(config) # Build model m = config.Model(ref_data, 2) m.cost.name = 'cost' m.cost_reg.name = 'cost_reg' m.ber.name = 'ber' m.ber_reg.name = 'ber_reg' m.pred.name = 'pred' m.confidence.name = 'confidence' # Train the model saveloc = 'model_data/%s-%s' % (model_name, config.param_desc) train_model(m, train_stream, valid_stream, load_location=None, save_location=None)
DataStreamMonitoring([cost], train_stream, prefix='train', after_epoch=True), Printing(after_epoch=True) ] ) main_loop.run() # Save the main loop if save_location is not None: logger.info('Saving the main loop...') dump_manager = MainLoopDumpManager(save_location) dump_manager.dump(main_loop) logger.info('Saved') if __name__ == "__main__": train_ex = 100 r_dim = 50 # Build model cost, error_rate = construct_model(Tanh(), r_dim, 30, 2) # Build datastream train_stream = prepare_data("ARCENE", "train", LogregOrderTransposeIt(10, True, 'model_param/logreg_param.pkl', 500)) # Train the model train_model(cost, error_rate, train_stream, load_location=None, save_location=None)
every_n_epochs=5 * config.pt_freq), Printing(every_n_epochs=1 * config.pt_freq, after_epoch=False), Plot(document='tr_' + model_name + '_' + config.param_desc, channels=[['train_cost', 'train_cost_reg', 'valid_cost'], ['train_ber', 'train_ber_reg', 'valid_ber']], server_url='http://eos21:4201', every_n_epochs=1 * config.pt_freq, after_epoch=False), FinishAfter(every_n_epochs=10000) ]) main_loop.run() if __name__ == "__main__": # Build datastream ref_data, train_stream, valid_stream, test_stream = prepare_data(config) # Build model m = config.Model(ref_data, 2) m.cost.name = 'cost' m.cost_reg.name = 'cost_reg' m.ber.name = 'ber' m.ber_reg.name = 'ber_reg' m.pred.name = 'pred' m.confidence.name = 'confidence' # Train the model saveloc = 'model_data/%s-%s' % (model_name, config.param_desc) train_model(m, train_stream, valid_stream,