mlp_hidden_dims = [30] lstm_hidden_dim = 20 noise_std = 0.1 dropout = 0.5 num_feats = 100 use_ensembling = False randomize_feats = False # step_rule = Momentum(learning_rate=0.01, momentum=0.9) step_rule = AdaDelta() # iter_scheme = LogregOrderTransposeIt(10, True, 'model_param/logreg_param.pkl', 500) iter_scheme = RandomTransposeIt(None, True, num_feats, True) valid_iter_scheme = RandomTransposeIt(None, True, None if use_ensembling else num_feats, True) param_desc = '%s-%d-%s-%s-%s%s' % (repr(mlp_hidden_dims), lstm_hidden_dim, repr(noise_std), repr(dropout), 'E' if use_ensembling else '', 'R' if randomize_feats else '') pt_freq = 1 def construct_model(input_dim, out_dim): # Construct the model r = tensor.fmatrix('r') x = tensor.fmatrix('x')
momentum = 0.9 if step_rule_name == 'adadelta': step_rule = AdaDelta() elif step_rule_name == 'rmsprop': step_rule = RMSProp() elif step_rule_name == 'momentum': step_rule_name = "mom%s,%s" % (repr(learning_rate), repr(momentum)) step_rule = Momentum(learning_rate=learning_rate, momentum=momentum) elif step_rule_name == 'adam': step_rule = Adam() else: raise ValueError("No such step rule: " + step_rule_name) ibatchsize = None iter_scheme = RandomTransposeIt(ibatchsize, False, None, False) valid_iter_scheme = RandomTransposeIt(ibatchsize, False, None, False) w_noise_std = 0.05 r_dropout = 0.0 s_dropout = 0.0 i_dropout = 0.0 a_dropout = 0.0 center_feats = True normalize_feats = True randomize_feats = False train_on_valid = False reconstruction_penalty = 1
from blocks.bricks import Rectifier, MLP, Softmax, Tanh from blocks.initialization import IsotropicGaussian, Constant from blocks.filter import VariableFilter from blocks.roles import WEIGHT from blocks.graph import ComputationGraph, apply_noise from datastream import RandomTransposeIt learning_rate = 0.00001 momentum = 0.9 # step_rule = Momentum(learning_rate=learning_rate, momentum=momentum) step_rule = AdaDelta() ibatchsize = 100 iter_scheme = RandomTransposeIt(ibatchsize, True, None, True) valid_iter_scheme = iter_scheme noise_std = 0.1 randomize_feats = False hidden_dims = [2, 2] activation_functions = [Tanh() for _ in hidden_dims] + [Tanh()] param_desc = '%s-%s-%s-mom%s,%s-i%d' % ( repr(hidden_dims), repr(noise_std), 'R' if randomize_feats else '', repr(learning_rate), repr(momentum), ibatchsize) pt_freq = 11