def test_check_nulls_bad_ser(): # verifies that the null check finds rows with nulls fail = pd.DataFrame.from_dict({ 'nulls_present': (True, ), 'null_count': (1, ), 'prop_null': (0.25, ), }) assert fail.equals(gf.check_nulls(bad_nulls1['b1']))
def test_check_nulls_bad_df(): # verifies that the null check finds rows with nulls fail = pd.DataFrame.from_dict({ 'column': ('b1', 'b2'), 'nulls_present': (True, False), 'null_count': (1, 0), 'prop_null': (0.25, 0.0) }) assert fail.equals(gf.check_nulls(bad_nulls1))
def test_fuzzy_nulls_bad1_df(): # verifies that the fuzzy null check finds rows with fuzzy nulls assert fail_fuzzy_df.equals(gf.check_fuzzy_nulls(bad_fuzzy1))
def test_fuzzy_nulls_good_ser(): # verifies good data passes the null check cols = ['fuzzy_nulls_present', 'fuzzy_null_count', 'prop_fuzzy_null'] assert not gf.check_fuzzy_nulls(good['g1']).loc[:, cols].any(axis=None)
def test_check_nulls_good_df(): # verifies good data passes the null check cols = ['nulls_present', 'null_count', 'prop_null'] assert not gf.check_nulls(good).loc[:, cols].any(axis=None)
def test_fuzzy_nulls_bad3_ser(): # verifies that the fuzzy null check finds rows with added fuzzy nulls assert fail_fuzzy_ser.equals( gf.check_fuzzy_nulls(bad_fuzzy3['b1'], add_fuzzy_nulls=['foo']))
def test_fuzzy_nulls_bad2_ser(): # verifies that the fuzzy null check finds rows with fuzzy nulls assert fail_fuzzy_ser.equals(gf.check_fuzzy_nulls(bad_fuzzy2['b1']))