def __init__(self, model_id: str = '', model_name: str = '', vector_length: int = '', description: str = '', paper: str = '', repo: str = '', architecture: str = 'Not stated.', tasks: str = 'Not stated.', release_date: date = '', limitations: str = 'Not stated.', installation: str = 'Not stated.', example: str = 'Not stated.', markdown_filepath: str = '', **kwargs): """ Model definition. Args: model_id: the identity of the model. Required for AutoEncoder. model_name: The name of the model vector_length: The length of the vector description: The description of the encoder paper: The paper which dictates the encoder repo: The repository fo the model architecture: The architecture of the model. task: The downstream task that the model was trained on limitations: The limitations of the encoder installation: How to isntall the encoder. example: The example of the encoder """ self.model_id = model_id self.model_name = model_name self.vector_length = vector_length self.description = description self.paper = paper self.repo = repo self.architecture = architecture self.tasks = tasks self.release_date = release_date.__str__( ) if release_date is not None else None self.limitations = limitations self.installation = installation self.example = example self.markdown_filepath = markdown_filepath for k, v in kwargs.items(): # assert( k in self.__class__.__allowed ) setattr(self, k, v) if markdown_filepath != '': self.from_markdown(markdown_filepath)
def get_logfile_name(self, log_date: date, log_number: int) -> str: return self.logDir + '/' + log_date.__str__() + "_" + str( log_number) + ".txt"
def get_boundaries(self, from_date: date, to_date: date) -> (int, int): from_id = self._git.search_repositories( query=from_date.__str__())[0].id to_id = self._git.search_repositories(query=to_date.__str__())[0].id return from_id, to_id