Example #1
0
    def test_polygons_to_masks(self):
        source_dataset = Dataset.from_iterable([
            DatasetItem(id=1,
                        image=np.zeros((5, 10, 3)),
                        annotations=[
                            Polygon([0, 0, 4, 0, 4, 4]),
                            Polygon([5, 0, 9, 0, 5, 5]),
                        ]),
        ])

        target_dataset = Dataset.from_iterable([
            DatasetItem(id=1,
                        image=np.zeros((5, 10, 3)),
                        annotations=[
                            Mask(
                                np.array([
                                    [0, 0, 0, 0, 0, 1, 1, 1, 1, 0],
                                    [0, 0, 0, 0, 0, 1, 1, 1, 0, 0],
                                    [0, 0, 0, 0, 0, 1, 1, 0, 0, 0],
                                    [0, 0, 0, 0, 0, 1, 0, 0, 0, 0],
                                    [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                                ]), ),
                            Mask(
                                np.array([
                                    [0, 1, 1, 1, 0, 0, 0, 0, 0, 0],
                                    [0, 0, 1, 1, 0, 0, 0, 0, 0, 0],
                                    [0, 0, 0, 1, 0, 0, 0, 0, 0, 0],
                                    [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                                    [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                                ]), ),
                        ]),
        ])

        actual = transforms.PolygonsToMasks(source_dataset)
        compare_datasets(self, target_dataset, actual)
Example #2
0
            def __iter__(self):
                return iter([
                    DatasetItem(id=1, subset='train', image=np.ones((4, 4, 3)),
                        annotations=[
                            Polygon([0, 1, 2, 1, 2, 3, 0, 3],
                                attributes={ 'is_crowd': False },
                                label=2, group=1, id=1),
                        ]),
                    DatasetItem(id=2, subset='train', image=np.ones((4, 4, 3)),
                        annotations=[
                            Mask(np.array([
                                    [0, 1, 0, 0],
                                    [0, 1, 0, 0],
                                    [0, 1, 1, 1],
                                    [0, 0, 0, 0]],
                                ),
                                attributes={ 'is_crowd': True },
                                label=4, group=3, id=3),
                        ]),

                    DatasetItem(id=3, subset='val', image=np.ones((4, 4, 3)),
                        annotations=[
                            Mask(np.array([
                                    [0, 0, 0, 0],
                                    [1, 1, 1, 0],
                                    [1, 1, 0, 0],
                                    [0, 0, 0, 0]],
                                ),
                                attributes={ 'is_crowd': True },
                                label=4, group=3, id=3),
                        ]),
                ])
Example #3
0
    def test_annotation_comparison(self):
        a = Dataset.from_iterable([
            DatasetItem(id=1, annotations=[
                Caption('hello'), # unmatched
                Caption('world', group=5),
                Label(2, attributes={ 'x': 1, 'y': '2', }),
                Bbox(1, 2, 3, 4, label=4, z_order=1, attributes={
                    'score': 1.0,
                }),
                Bbox(5, 6, 7, 8, group=5),
                Points([1, 2, 2, 0, 1, 1], label=0, z_order=4),
                Mask(label=3, z_order=2, image=np.ones((2, 3))),
            ]),
        ], categories=['a', 'b', 'c', 'd'])

        b = Dataset.from_iterable([
            DatasetItem(id=1, annotations=[
                Caption('world', group=5),
                Label(2, attributes={ 'x': 1, 'y': '2', }),
                Bbox(1, 2, 3, 4, label=4, z_order=1, attributes={
                    'score': 1.0,
                }),
                Bbox(5, 6, 7, 8, group=5),
                Bbox(5, 6, 7, 8, group=5), # unmatched
                Points([1, 2, 2, 0, 1, 1], label=0, z_order=4),
                Mask(label=3, z_order=2, image=np.ones((2, 3))),
            ]),
        ], categories=['a', 'b', 'c', 'd'])

        comp = ExactComparator()
        matched, unmatched, _, _, errors = comp.compare_datasets(a, b)

        self.assertEqual(6, len(matched), matched)
        self.assertEqual(2, len(unmatched), unmatched)
        self.assertEqual(0, len(errors), errors)
Example #4
0
    def test_crop_covered_segments(self):
        source_dataset = Dataset.from_iterable([
            DatasetItem(
                id=1,
                image=np.zeros((5, 5, 3)),
                annotations=[
                    # The mask is partially covered by the polygon
                    Mask(np.array(
                        [[0, 0, 1, 1, 1], [0, 0, 1, 1, 1], [1, 1, 1, 1, 1],
                         [1, 1, 1, 0, 0], [1, 1, 1, 0, 0]], ),
                         z_order=0),
                    Polygon([1, 1, 4, 1, 4, 4, 1, 4], z_order=1),
                ]),
        ])

        target_dataset = Dataset.from_iterable([
            DatasetItem(id=1,
                        image=np.zeros((5, 5, 3)),
                        annotations=[
                            Mask(np.array([[0, 0, 1, 1, 1], [0, 0, 0, 0, 1],
                                           [1, 0, 0, 0, 1], [1, 0, 0, 0, 0],
                                           [1, 1, 1, 0, 0]], ),
                                 z_order=0),
                            Polygon([1, 1, 4, 1, 4, 4, 1, 4], z_order=1),
                        ]),
        ])

        actual = transforms.CropCoveredSegments(source_dataset)
        compare_datasets(self, target_dataset, actual)
Example #5
0
 def __iter__(self):
     return iter([
         DatasetItem(id=1, subset='train',
             image=np.ones((16, 16, 3)),
             annotations=[
                 Bbox(0, 4, 4, 8, label=0, group=2, id=0,
                     attributes={
                         'occluded': False, 'username': '',
                     }
                 ),
                 Polygon([0, 4, 4, 4, 5, 6], label=1, id=1,
                     attributes={
                         'occluded': True, 'username': '',
                         'a1': 'qwe',
                         'a2': True,
                         'a3': 123,
                     }
                 ),
                 Mask(np.array([[0, 1], [1, 0], [1, 1]]), group=2,
                     id=2, attributes={
                         'occluded': False, 'username': '******'
                     }
                 ),
                 Bbox(1, 2, 3, 4, group=1, id=3, attributes={
                     'occluded': False, 'username': '',
                 }),
                 Mask(np.array([[0, 0], [0, 0], [1, 1]]), group=1,
                     id=4, attributes={
                         'occluded': True, 'username': ''
                     }
                 ),
             ]
         ),
     ])
    def test_can_import_masks(self):
        expected_dataset = Dataset.from_iterable([
            DatasetItem(id='1', subset='train',
                image=np.ones((2, 5, 3)),
                annotations=[
                    Mask(group=0,
                        image=np.array([[0, 1, 1, 0, 0], [0, 0, 0, 0, 0]]),
                        attributes={ 'index': 0, 'color': '108 225 132',
                            'text': 'F', 'center': '0 1'
                        }),
                    Mask(group=1,
                        image=np.array([[0, 0, 0, 1, 0], [0, 0, 0, 1, 0]]),
                        attributes={ 'index': 1, 'color': '82 174 214',
                            'text': 'T', 'center': '1 3'
                        }),
                    Mask(group=1,
                        image=np.array([[0, 0, 0, 0, 0], [0, 0, 0, 0, 1]]),
                        attributes={ 'index': 2, 'color': '241 73 144',
                            'text': 'h', 'center': '1 4'
                        }),
                ]
            ),
        ])

        dataset = Dataset.import_from(
            osp.join(DUMMY_DATASET_DIR, 'text_segmentation'), 'icdar')

        compare_datasets(self, expected_dataset, dataset)
Example #7
0
    def test_can_save_and_load_image_with_arbitrary_extension(self):
        expected = Dataset.from_iterable([
            DatasetItem('q/1',
                        image=Image(path='q/1.JPEG', data=np.zeros((4, 3, 3))),
                        annotations=[
                            Mask(np.array([[0, 1, 0, 0, 0]]),
                                 label=0,
                                 attributes={'track_id': 1}),
                        ]),
            DatasetItem('a/b/c/2',
                        image=Image(path='a/b/c/2.bmp',
                                    data=np.zeros((3, 4, 3))),
                        annotations=[
                            Mask(np.array([[0, 1, 0, 0, 0]]),
                                 label=0,
                                 attributes={'track_id': 1}),
                        ]),
        ],
                                         categories=['a'])

        with TestDir() as test_dir:
            self._test_save_and_load(expected,
                                     partial(MotsPngConverter.convert,
                                             save_images=True),
                                     test_dir,
                                     require_images=True)
Example #8
0
    def test_boxes_to_masks(self):
        source_dataset = Dataset.from_iterable([
            DatasetItem(id=1,
                        image=np.zeros((5, 5, 3)),
                        annotations=[
                            Bbox(0, 0, 3, 3, z_order=1),
                            Bbox(0, 0, 3, 1, z_order=2),
                            Bbox(0, 2, 3, 1, z_order=3),
                        ]),
        ])

        target_dataset = Dataset.from_iterable([
            DatasetItem(
                id=1,
                image=np.zeros((5, 5, 3)),
                annotations=[
                    Mask(np.array(
                        [[1, 1, 1, 0, 0], [1, 1, 1, 0, 0], [1, 1, 1, 0, 0],
                         [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]], ),
                         z_order=1),
                    Mask(np.array(
                        [[1, 1, 1, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0],
                         [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]], ),
                         z_order=2),
                    Mask(np.array(
                        [[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [1, 1, 1, 0, 0],
                         [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]], ),
                         z_order=3),
                ]),
        ])

        actual = transforms.BoxesToMasks(source_dataset)
        compare_datasets(self, target_dataset, actual)
 def __iter__(self):
     yield DatasetItem(id=1,
                       image=np.ones((1, 5, 3)),
                       annotations=[
                           Mask(image=np.array([[1, 1, 0, 1, 0]]),
                                label=self._label('label_1')),
                           Mask(image=np.array([[0, 0, 1, 0, 1]]),
                                label=self._label('label_2')),
                       ])
Example #10
0
    def _load_annotations(self, item_id):
        item_annotations = []

        class_mask = None
        segm_path = osp.join(self._dataset_dir, VocPath.SEGMENTATION_DIR,
                             item_id + VocPath.SEGM_EXT)
        if osp.isfile(segm_path):
            inverse_cls_colormap = \
                self._categories[AnnotationType.mask].inverse_colormap
            class_mask = lazy_mask(segm_path, inverse_cls_colormap)

        instances_mask = None
        inst_path = osp.join(self._dataset_dir, VocPath.INSTANCES_DIR,
                             item_id + VocPath.SEGM_EXT)
        if osp.isfile(inst_path):
            instances_mask = lazy_mask(inst_path, _inverse_inst_colormap)

        if instances_mask is not None:
            compiled_mask = CompiledMask(class_mask, instances_mask)

            if class_mask is not None:
                label_cat = self._categories[AnnotationType.label]
                instance_labels = compiled_mask.get_instance_labels(
                    class_count=len(label_cat.items))
            else:
                instance_labels = {
                    i: None
                    for i in range(compiled_mask.instance_count)
                }

            for instance_id, label_id in instance_labels.items():
                image = compiled_mask.lazy_extract(instance_id)

                attributes = {}
                if label_id is not None:
                    actions = {
                        a: False
                        for a in label_cat.items[label_id].attributes
                    }
                    attributes.update(actions)

                item_annotations.append(
                    Mask(image=image,
                         label=label_id,
                         attributes=attributes,
                         group=instance_id))
        elif class_mask is not None:
            log.warn("item '%s': has only class segmentation, "
                     "instance masks will not be available" % item_id)
            class_mask = class_mask()
            classes = np.unique(class_mask)
            for label_id in classes:
                image = self._lazy_extract_mask(class_mask, label_id)
                item_annotations.append(Mask(image=image, label=label_id))

        return item_annotations
Example #11
0
    def test_remap_labels(self):
        src_dataset = Dataset.from_iterable(
            [
                DatasetItem(
                    id=1,
                    annotations=[
                        # Should be remapped
                        Label(1),
                        Bbox(1, 2, 3, 4, label=2),
                        Mask(image=np.array([1]), label=3),

                        # Should be kept
                        Polygon([1, 1, 2, 2, 3, 4], label=4),
                        PolyLine([1, 3, 4, 2, 5, 6])
                    ])
            ],
            categories={
                AnnotationType.label:
                LabelCategories.from_iterable('label%s' % i for i in range(5)),
                AnnotationType.mask:
                MaskCategories(colormap=mask_tools.generate_colormap(5)),
            })

        dst_dataset = Dataset.from_iterable(
            [
                DatasetItem(id=1,
                            annotations=[
                                Label(1),
                                Bbox(1, 2, 3, 4, label=0),
                                Mask(image=np.array([1]), label=1),
                                Polygon([1, 1, 2, 2, 3, 4], label=2),
                                PolyLine([1, 3, 4, 2, 5, 6], label=None)
                            ]),
            ],
            categories={
                AnnotationType.label:
                LabelCategories.from_iterable(['label0', 'label9', 'label4']),
                AnnotationType.mask:
                MaskCategories(
                    colormap={
                        k: v
                        for k, v in mask_tools.generate_colormap(5).items()
                        if k in {0, 1, 3, 4}
                    })
            })

        actual = transforms.RemapLabels(src_dataset,
                                        mapping={
                                            'label1': 'label9',
                                            'label2': 'label0',
                                            'label3': 'label9',
                                        },
                                        default='keep')

        compare_datasets(self, dst_dataset, actual)
Example #12
0
 def __iter__(self):
     return iter([
         DatasetItem(id='кириллица с пробелом',
                     image=np.ones((1, 5, 3)),
                     annotations=[
                         Mask(image=np.array([[1, 0, 0, 1, 0]]),
                              label=0),
                         Mask(image=np.array([[0, 1, 1, 0, 1]]),
                              label=3),
                     ]),
     ])
Example #13
0
 def __iter__(self):
     return iter([
         DatasetItem(id=1, subset='a', annotations=[
             Mask(image=np.array([[0, 0, 1, 0, 0]]), label=4,
                 group=1),
             Mask(image=np.array([[1, 1, 0, 0, 0]]), label=3,
                 group=2),
             Mask(image=np.array([[0, 0, 0, 1, 0]]), label=3,
                 group=3),
         ]),
     ])
Example #14
0
 def __iter__(self):
     return iter([
         DatasetItem(id=1, subset='a', annotations=[
             # overlapping masks, the first should be truncated
             # the second and third are different instances
             Mask(image=np.array([[0, 0, 0, 1, 0]]), label=3,
                 z_order=3),
             Mask(image=np.array([[0, 1, 1, 1, 0]]), label=4,
                 z_order=1),
             Mask(image=np.array([[1, 1, 0, 0, 0]]), label=3,
                 z_order=2),
         ]),
     ])
Example #15
0
 def __iter__(self):
     return iter([
         DatasetItem(id=1,
                     subset='a',
                     image=np.ones((1, 5, 3)),
                     annotations=[
                         Mask(image=np.array([[0, 0, 0, 1, 0]]),
                              label=0),
                         Mask(image=np.array([[0, 1, 1, 0, 0]]),
                              label=3),
                         Mask(image=np.array([[1, 0, 0, 0, 1]]),
                              label=4),
                     ]),
     ])
Example #16
0
    def test_can_crop_covered_segments(self):
        source_dataset = Dataset.from_iterable([
            DatasetItem(
                id=1,
                image=np.zeros((5, 5, 3)),
                annotations=[
                    Mask(np.array(
                        [[0, 0, 1, 1, 1], [0, 0, 1, 1, 1], [1, 1, 0, 1, 1],
                         [1, 1, 1, 0, 0], [1, 1, 1, 0, 0]], ),
                         label=2,
                         id=1,
                         z_order=0),
                    Polygon([1, 1, 4, 1, 4, 4, 1, 4], label=1, id=2,
                            z_order=1),
                ]),
        ],
                                               categories=[
                                                   str(i) for i in range(10)
                                               ])

        target_dataset = Dataset.from_iterable([
            DatasetItem(id=1,
                        image=np.zeros((5, 5, 3)),
                        annotations=[
                            Mask(np.array([[0, 0, 1, 1, 1], [0, 0, 0, 0, 1],
                                           [1, 0, 0, 0, 1], [1, 0, 0, 0, 0],
                                           [1, 1, 1, 0, 0]], ),
                                 attributes={'is_crowd': True},
                                 label=2,
                                 id=1,
                                 group=1),
                            Polygon([1, 1, 4, 1, 4, 4, 1, 4],
                                    label=1,
                                    id=2,
                                    group=2,
                                    attributes={'is_crowd': False}),
                        ],
                        attributes={'id': 1}),
        ],
                                               categories=[
                                                   str(i) for i in range(10)
                                               ])

        with TestDir() as test_dir:
            self._test_save_and_load(source_dataset,
                                     partial(CocoInstancesConverter.convert,
                                             crop_covered=True),
                                     test_dir,
                                     target_dataset=target_dataset)
Example #17
0
 def __iter__(self):
     return iter([
         DatasetItem(id='q/1',
                     image=Image(path='q/1.JPEG',
                                 data=np.zeros((4, 3, 3)))),
         DatasetItem(id='a/b/c/2',
                     image=Image(path='a/b/c/2.bmp',
                                 data=np.ones((1, 5, 3))),
                     annotations=[
                         Mask(np.array([[0, 0, 0, 1, 0]]),
                              label=self._label('a')),
                         Mask(np.array([[0, 1, 1, 0, 0]]),
                              label=self._label('b')),
                     ])
     ])
Example #18
0
    def test_transform_labels(self):
        src_dataset = Dataset.from_iterable(
            [
                DatasetItem(id=1,
                            annotations=[
                                Label(1),
                                Bbox(1, 2, 3, 4, label=2),
                                Bbox(1, 3, 3, 3),
                                Mask(image=np.array([1]), label=3),
                                Polygon([1, 1, 2, 2, 3, 4], label=4),
                                PolyLine([1, 3, 4, 2, 5, 6], label=5)
                            ])
            ],
            categories=['label%s' % i for i in range(6)])

        dst_dataset = Dataset.from_iterable([
            DatasetItem(
                id=1,
                annotations=[Label(1),
                             Label(2),
                             Label(3),
                             Label(4),
                             Label(5)]),
        ],
                                            categories=[
                                                'label%s' % i for i in range(6)
                                            ])

        actual = transforms.AnnsToLabels(src_dataset)

        compare_datasets(self, dst_dataset, actual)
Example #19
0
    def test_shapes_to_boxes(self):
        source_dataset = Dataset.from_iterable([
            DatasetItem(id=1,
                        image=np.zeros((5, 5, 3)),
                        annotations=[
                            Mask(np.array([[0, 0, 1, 1, 1], [0, 0, 0, 0, 1],
                                           [1, 0, 0, 0, 1], [1, 0, 0, 0, 0],
                                           [1, 1, 1, 0, 0]], ),
                                 id=1),
                            Polygon([1, 1, 4, 1, 4, 4, 1, 4], id=2),
                            PolyLine([1, 1, 2, 1, 2, 2, 1, 2], id=3),
                            Points([2, 2, 4, 2, 4, 4, 2, 4], id=4),
                        ]),
        ])

        target_dataset = Dataset.from_iterable([
            DatasetItem(id=1,
                        image=np.zeros((5, 5, 3)),
                        annotations=[
                            Bbox(0, 0, 4, 4, id=1),
                            Bbox(1, 1, 3, 3, id=2),
                            Bbox(1, 1, 1, 1, id=3),
                            Bbox(2, 2, 2, 2, id=4),
                        ]),
        ])

        actual = transforms.ShapesToBoxes(source_dataset)
        compare_datasets(self, target_dataset, actual)
Example #20
0
    def test_can_convert_polygons_to_mask(self):
        source_dataset = Dataset.from_iterable([
            DatasetItem(id=1, image=np.zeros((6, 10, 3)),
                annotations=[
                    Polygon([0, 0, 4, 0, 4, 4],
                        label=3, id=4, group=4),
                    Polygon([5, 0, 9, 0, 5, 5],
                        label=3, id=4, group=4),
                ]
            ),
        ], categories=[str(i) for i in range(10)])

        target_dataset = Dataset.from_iterable([
            DatasetItem(id=1, image=np.zeros((6, 10, 3)),
                annotations=[
                    Mask(np.array([
                            [0, 1, 1, 1, 0, 1, 1, 1, 1, 0],
                            [0, 0, 1, 1, 0, 1, 1, 1, 0, 0],
                            [0, 0, 0, 1, 0, 1, 1, 0, 0, 0],
                            [0, 0, 0, 0, 0, 1, 0, 0, 0, 0],
                            [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                            [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]],
                            # only internal fragment (without the border),
                            # but not everywhere...
                        ),
                        attributes={ 'is_crowd': True },
                        label=3, id=4, group=4),
                ], attributes={'id': 1}
            ),
        ], categories=[str(i) for i in range(10)])

        with TestDir() as test_dir:
            self._test_save_and_load(source_dataset,
                partial(CocoInstancesConverter.convert, segmentation_mode='mask'),
                test_dir, target_dataset=target_dataset)
Example #21
0
    def test_mask_to_polygons(self):
        source = Dataset.from_iterable([
            DatasetItem(id=1,
                        image=np.zeros((5, 10, 3)),
                        annotations=[
                            Mask(
                                np.array([
                                    [0, 1, 1, 1, 0, 1, 1, 1, 1, 0],
                                    [0, 0, 1, 1, 0, 1, 1, 1, 0, 0],
                                    [0, 0, 0, 1, 0, 1, 1, 0, 0, 0],
                                    [0, 0, 0, 0, 0, 1, 0, 0, 0, 0],
                                    [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                                ]), ),
                        ]),
        ])

        expected = Dataset.from_iterable([
            DatasetItem(id=1,
                        image=np.zeros((5, 10, 3)),
                        annotations=[
                            Polygon([3.0, 2.5, 1.0, 0.0, 3.5, 0.0, 3.0, 2.5]),
                            Polygon([5.0, 3.5, 4.5, 0.0, 8.0, 0.0, 5.0, 3.5]),
                        ]),
        ])

        actual = transforms.MasksToPolygons(source)
        compare_datasets(self, expected, actual)
    def test_can_save_masks(self):
        test_dataset = Dataset.from_iterable(
            [
                DatasetItem(id=1,
                            subset='train',
                            image=np.ones((4, 5, 3)),
                            annotations=[
                                Mask(image=np.array([
                                    [1, 0, 0, 1],
                                    [0, 1, 1, 0],
                                    [0, 1, 1, 0],
                                    [1, 0, 0, 1],
                                ]),
                                     label=1),
                            ],
                            attributes={'source_id': ''}),
            ],
            categories={
                AnnotationType.label:
                LabelCategories.from_iterable('label_' + str(label)
                                              for label in range(10)),
            })

        with TestDir() as test_dir:
            self._test_save_and_load(
                test_dataset,
                partial(TfDetectionApiConverter.convert, save_masks=True),
                test_dir)
Example #23
0
    def test_can_import_mots_annotations_with_splited_masks(self):
        #https://github.com/openvinotoolkit/cvat/issues/3360

        format_name = 'MOTS PNG 1.0'
        source_dataset = Dataset.from_iterable([
            DatasetItem(id='image_0',
                        annotations=[
                            Mask(np.array([[1, 1, 1, 0, 1, 1, 1]] * 5),
                                 label=0,
                                 attributes={'track_id': 0})
                        ])
        ],
                                               categories=['label_0'])

        with tempfile.TemporaryDirectory() as temp_dir:
            dataset_dir = osp.join(temp_dir, 'dataset')
            source_dataset.export(dataset_dir, 'mots_png')
            dataset_path = osp.join(temp_dir, 'annotations.zip')
            make_zip_archive(dataset_dir, dataset_path)

            images = self._generate_task_images(1, size=(5, 7))
            task = {
                'name': 'test',
                "overlap": 0,
                "segment_size": 100,
                "labels": [{
                    'name': 'label_0'
                }]
            }
            task.update()
            task = self._create_task(task, images)

            dm.task.import_task_annotations(task['id'], dataset_path,
                                            format_name)
            self._test_can_import_annotations(task, format_name)
Example #24
0
    def test_can_import_instances(self):
        expected_dataset = Dataset.from_iterable([
            DatasetItem(id='000000000001',
                        image=np.ones((10, 5, 3)),
                        subset='val',
                        attributes={'id': 1},
                        annotations=[
                            Polygon([0, 0, 1, 0, 1, 2, 0, 2],
                                    label=0,
                                    id=1,
                                    group=1,
                                    attributes={
                                        'is_crowd': False,
                                        'x': 1,
                                        'y': 'hello'
                                    }),
                            Mask(np.array([[1, 0, 0, 1, 0]] * 5 +
                                          [[1, 1, 1, 1, 0]] * 5),
                                 label=0,
                                 id=2,
                                 group=2,
                                 attributes={'is_crowd': True}),
                        ]),
        ],
                                                 categories=[
                                                     'TEST',
                                                 ])

        dataset = Dataset.import_from(
            osp.join(DUMMY_DATASET_DIR, 'coco_instances'), 'coco')

        compare_datasets(self, expected_dataset, dataset)
Example #25
0
 def __iter__(self):
     return iter([
         DatasetItem(
             id='2007_000001',
             subset='train',
             image=Image(path='2007_000001.jpg', size=(10, 20)),
             annotations=[
                 Label(self._label(l.name))
                 for l in VOC.VocLabel if l.value % 2 == 1
             ] + [
                 Bbox(
                     1,
                     2,
                     2,
                     2,
                     label=self._label('cat'),
                     attributes={
                         'pose': VOC.VocPose(1).name,
                         'truncated': True,
                         'difficult': False,
                         'occluded': False,
                     },
                     id=1,
                     group=1,
                 ),
                 Bbox(
                     4,
                     5,
                     2,
                     2,
                     label=self._label('person'),
                     attributes={
                         'truncated': False,
                         'difficult': False,
                         'occluded': False,
                         **{
                             a.name: a.value % 2 == 1
                             for a in VOC.VocAction
                         }
                     },
                     id=2,
                     group=2,
                 ),
                 Bbox(5.5,
                      6,
                      2,
                      2,
                      label=self._label(VOC.VocBodyPart(1).name),
                      group=2),
                 Mask(
                     image=np.ones([5, 10]),
                     label=self._label(VOC.VocLabel(2).name),
                     group=1,
                 ),
             ]),
         DatasetItem(id='2007_000002',
                     subset='test',
                     image=np.ones((10, 20, 3))),
     ])
Example #26
0
    def test_merge_instance_segments(self):
        source_dataset = Dataset.from_iterable([
            DatasetItem(id=1, image=np.zeros((5, 5, 3)),
                annotations=[
                    Mask(np.array([
                            [0, 0, 1, 1, 1],
                            [0, 0, 0, 0, 1],
                            [1, 0, 0, 0, 1],
                            [1, 0, 0, 0, 0],
                            [1, 1, 1, 0, 0]],
                        ),
                        z_order=0, group=1),
                    Polygon([1, 1, 4, 1, 4, 4, 1, 4],
                        z_order=1, group=1),
                    Polygon([0, 0, 0, 2, 2, 2, 2, 0],
                        z_order=1),
                ]
            ),
        ])

        target_dataset = Dataset.from_iterable([
            DatasetItem(id=1, image=np.zeros((5, 5, 3)),
                annotations=[
                    Mask(np.array([
                            [0, 0, 1, 1, 1],
                            [0, 1, 1, 1, 1],
                            [1, 1, 1, 1, 1],
                            [1, 1, 1, 1, 0],
                            [1, 1, 1, 0, 0]],
                        ),
                        z_order=0, group=1),
                    Mask(np.array([
                            [1, 1, 0, 0, 0],
                            [1, 1, 0, 0, 0],
                            [0, 0, 0, 0, 0],
                            [0, 0, 0, 0, 0],
                            [0, 0, 0, 0, 0]],
                        ),
                        z_order=1),
                ]
            ),
        ])

        actual = transforms.MergeInstanceSegments(source_dataset,
            include_polygons=True)
        compare_datasets(self, target_dataset, actual)
Example #27
0
 def __iter__(self):
     return iter([
         DatasetItem(
             id=1,
             image=np.zeros((5, 5, 3)),
             annotations=[
                 Mask(np.array([[0, 0, 1, 1, 1], [0, 1, 1, 1, 1],
                                [1, 1, 1, 1, 1], [1, 1, 1, 1, 0],
                                [1, 1, 1, 0, 0]], ),
                      z_order=0,
                      group=1),
                 Mask(np.array([[1, 1, 0, 0, 0], [1, 1, 0, 0, 0],
                                [0, 0, 0, 0, 0], [0, 0, 0, 0, 0],
                                [0, 0, 0, 0, 0]], ),
                      z_order=1),
             ]),
     ])
Example #28
0
 def __iter__(self):
     return iter([
         DatasetItem(id=100,
                     subset='train',
                     image=np.ones((10, 6, 3)),
                     annotations=[
                         Caption('hello', id=1),
                         Caption('world', id=2, group=5),
                         Label(2, id=3, attributes={
                             'x': 1,
                             'y': '2',
                         }),
                         Bbox(1,
                              2,
                              3,
                              4,
                              label=4,
                              id=4,
                              z_order=1,
                              attributes={
                                  'score': 1.0,
                              }),
                         Bbox(5, 6, 7, 8, id=5, group=5),
                         Points([1, 2, 2, 0, 1, 1],
                                label=0,
                                id=5,
                                z_order=4),
                         Mask(label=3,
                              id=5,
                              z_order=2,
                              image=np.ones((2, 3))),
                     ]),
         DatasetItem(id=21,
                     subset='train',
                     annotations=[
                         Caption('test'),
                         Label(2),
                         Bbox(1, 2, 3, 4, 5, id=42, group=42)
                     ]),
         DatasetItem(id=2,
                     subset='val',
                     annotations=[
                         PolyLine([1, 2, 3, 4, 5, 6, 7, 8],
                                  id=11,
                                  z_order=1),
                         Polygon([1, 2, 3, 4, 5, 6, 7, 8],
                                 id=12,
                                 z_order=4),
                     ]),
         DatasetItem(id=42,
                     subset='test',
                     attributes={
                         'a1': 5,
                         'a2': '42'
                     }),
         DatasetItem(id=42),
         DatasetItem(id=43, image=Image(path='1/b/c.qq', size=(2, 4))),
     ])
    def test_can_save_masks(self):
        source = Dataset.from_iterable([
            DatasetItem(id=1, subset='a', image=np.ones((5, 1)), annotations=[
                # overlapping masks, the first should be truncated
                # the first and third are different instances
                Mask(np.array([[0, 0, 0, 1, 0]]), label=3, z_order=3,
                    attributes={'track_id': 1}),
                Mask(np.array([[0, 1, 1, 1, 0]]), label=2, z_order=1,
                    attributes={'track_id': 2}),
                Mask(np.array([[1, 1, 0, 0, 0]]), label=3, z_order=2,
                    attributes={'track_id': 3}),
            ]),
            DatasetItem(id=2, subset='a', image=np.ones((5, 1)), annotations=[
                Mask(np.array([[1, 0, 0, 0, 0]]), label=3,
                    attributes={'track_id': 2}),
            ]),
            DatasetItem(id=3, subset='b', image=np.ones((5, 1)), annotations=[
                Mask(np.array([[0, 1, 0, 0, 0]]), label=0,
                    attributes={'track_id': 1}),
            ]),
        ], categories=['a', 'b', 'c', 'd'])

        target = Dataset.from_iterable([
            DatasetItem(id=1, subset='a', image=np.ones((5, 1)), annotations=[
                Mask(np.array([[0, 0, 0, 1, 0]]), label=3,
                    attributes={'track_id': 1}),
                Mask(np.array([[0, 0, 1, 0, 0]]), label=2,
                    attributes={'track_id': 2}),
                Mask(np.array([[1, 1, 0, 0, 0]]), label=3,
                    attributes={'track_id': 3}),
            ]),
            DatasetItem(id=2, subset='a', image=np.ones((5, 1)), annotations=[
                Mask(np.array([[1, 0, 0, 0, 0]]), label=3,
                    attributes={'track_id': 2}),
            ]),
            DatasetItem(id=3, subset='b', image=np.ones((5, 1)), annotations=[
                Mask(np.array([[0, 1, 0, 0, 0]]), label=0,
                    attributes={'track_id': 1}),
            ]),
        ], categories=['a', 'b', 'c', 'd'])

        with TestDir() as test_dir:
            self._test_save_and_load(source,
                partial(MotsPngConverter.convert, save_images=True),
                test_dir, target_dataset=target)
Example #30
0
 def __iter__(self):
     return iter([
         DatasetItem(id=1, subset='a', annotations=[
             Mask(image=bit(x, y, shape=[10, 10]),
                 label=self._label(VOC.VocLabel(3).name),
                 group=10 * y + x + 1
             )
             for y in range(10) for x in range(10)
         ]),
     ])