def main(processes = 8): lda_loaded_model = lda.load_lda('model/100_topics_lda.txt') user_list = db_info.user_list user_list_list = db.split_item(user_list) results = multiprocess(processes,lda_loaded_model,user_list_list) json.dump(results,open("matrix/100_topics_sim_matrix.txt",'w')) # topic_sim_matrix(lda_loaded_model) # item_lda_model(num_topics=50,path='model/50_topics_lda.txt')
def main(processes=8): lda_loaded_model = lda.load_lda('model/100_topics_lda.txt') user_list = db_info.user_list user_list_list = db.split_item(user_list) results = multiprocess(processes, lda_loaded_model, user_list_list) json.dump(results, open("matrix/100_topics_sim_matrix.txt", 'w')) # topic_sim_matrix(lda_loaded_model) # item_lda_model(num_topics=50,path='model/50_topics_lda.txt')
def calulate_user_similarity(processes,topics): user_list = db_info.user_list user_list_list = db.split_item(user_list) user_topic_map = get_user_topic_map(topics) node = len(user_list_list)/60 for i in range(60): exe_list = user_list_list[i*node:(i+1)*node] results = multiprocess(processes,exe_list,user_topic_map) path = 'user_similarity/user_topic_sim/'+str(topics)+'_topics/' + str(i) + '.pickle' util.write_file(results,path)
def main(processes=8): user_list = db_info.user_list user_list_list = db.split_item(user_list) results = multiprocess(processes, user_list_list) json.dump(results, open("matrix/tags_sim_matrix.txt", 'w'))
def main(processes = 8): user_list = db_info.user_list user_list_list = db.split_item(user_list) results = multiprocess(processes,user_list_list) json.dump(results,open("matrix/user_items_sim_matrix.txt",'w'))