Example #1
0
    def setUp(self):
        self.basic = ddm.Model(dx=.005,
                               dt=.01,
                               T_dur=2,
                               drift=ddm.DriftConstant(drift=.4),
                               noise=ddm.NoiseConstant(noise=1),
                               bound=ddm.BoundConstant(B=1))

        class NoiseCond(ddm.Noise):
            name = "Noise with a condition"
            required_conditions = ['cond']
            required_parameters = []

            def get_noise(self, conditions, **kwargs):
                return conditions["cond"]

        self.withcond = ddm.Model(noise=NoiseCond())

        class FancyBounds(ddm.Bound):
            name = "Increasing/decreasing bounds"
            required_conditions = []
            required_parameters = []

            def get_bound(self, conditions, t, **kwargs):
                if t <= 1:
                    return 1 + t
                if t > 1:
                    return 2 / t

        self.bound = ddm.Model(bound=FancyBounds())
Example #2
0
 def test_ICPoint(self):
     """Arbitrary pointwise initial condition"""
     m = ddm.Model(name='ICPoint_test',
                   drift=ddm.DriftConstant(drift=2),
                   noise=ddm.NoiseConstant(noise=1.5),
                   bound=ddm.BoundConstant(B=1),
                   IC=ddm.ICPoint(x0=-.25))
     _modeltest_numerical_vs_analytical(m,
                                        method="implicit",
                                        max_diff=.3,
                                        mean_diff=.2,
                                        prob_diff=.05)
    def setUp(self):
        self.basic = ddm.Model(dx=.005,
                               dt=.01,
                               T_dur=2,
                               drift=ddm.DriftConstant(drift=.4),
                               noise=ddm.NoiseConstant(noise=1),
                               bound=ddm.BoundConstant(B=1))

        class NoiseCond(ddm.Noise):
            name = "Noise with a condition"
            required_conditions = ['cond']
            required_parameters = []

            def get_noise(self, conditions, **kwargs):
                return conditions["cond"]

        self.withcond = ddm.Model(noise=NoiseCond())