def debiasing_bam(equality_sets, vocab, vecs, t1_list, t2_list, a1_list,
                  a2_list, aug1_list, aug2_list):
    new_vecs, proj_mat = bam.debias_proc(equality_sets, vocab, vecs)
    t1, t2, a1, a2, aug1, aug2 = calculation.vocabs_to_dicts(
        vocab, new_vecs, t1_list, t2_list, a1_list, a2_list, aug1_list,
        aug2_list)
    return new_vecs, t1, t2, a1, a2, aug1, aug2
Example #2
0
def debiasing_gbdd_bam(equality_sets, vocab, vecs, t1_list, t2_list, a1_list,
                       a2_list):
    v_b = gbdd.get_bias_direction(equality_sets, vecs, vocab)
    new_vocab, new_vecs = gbdd.debias_direction_linear(v_b, vecs)
    new_vocab, new_vecs = bam.debias_proc(equality_sets, new_vocab, new_vecs)
    t1, t2, a1, a2 = calculation.vocabs_to_dicts(new_vocab, new_vecs, t1_list,
                                                 t2_list, a1_list, a2_list)
    return new_vecs, t1, t2, a1, a2
def debiasing_bam_gbdd(equality_sets, vocab, vecs, t1_list, t2_list, a1_list,
                       a2_list, aug1_list, aug2_list):
    new_vecs, proj_matrix = bam.debias_proc(equality_sets, vocab, vecs)
    v_b = gbdd.get_bias_direction(equality_sets, vocab, new_vecs)
    new_vecs = gbdd.debias_direction_linear(v_b, new_vecs)
    t1, t2, a1, a2, aug1, aug2 = calculation.vocabs_to_dicts(
        vocab, new_vecs, t1_list, t2_list, a1_list, a2_list, aug1_list,
        aug2_list)
    return new_vecs, t1, t2, a1, a2, aug1, aug2
def debiasing_gbdd_bam_full(equality_sets, vocab, vecs):
    v_b = gbdd.get_bias_direction(equality_sets, vocab, vecs)
    new_vecs = gbdd.debias_direction_linear(v_b, vecs)
    new_vecs, proj_matrix = bam.debias_proc(equality_sets, vocab, new_vecs)
    return new_vecs
def debiasing_bam_full(equality_sets, vocab, vecs):
    new_vecs, proj_mat = bam.debias_proc(equality_sets, vocab, vecs)
    return new_vecs