def evaluation(args): data_transforms = dec_transforms.Compose([dec_transforms.ConvertImgFloat(), dec_transforms.Resize(args.img_height, args.img_width), dec_transforms.ToTensor()]) dsets = dec_dataset_kaggle.NucleiCell(args.testDir, args.annoDir, data_transforms, imgSuffix=args.imgSuffix, annoSuffix=args.annoSuffix) model = dec_net.resnetssd50(pretrained=True, num_classes=args.num_classes) model = load_dec_weights(model, args.resume) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model = model.to(device) model.eval() detector = Detect(num_classes=args.num_classes, top_k=args.top_k, conf_thresh=args.conf_thresh, nms_thresh=args.nms_thresh, variance=[0.1, 0.2]) anchorGen = Anchors(args.img_height, args.img_width) anchors = anchorGen.forward() det_file = os.path.join(args.cacheDir, 'detections.pkl') if not os.path.exists(args.cacheDir): os.mkdir(args.cacheDir) all_boxes = [[[] for _ in range(len(dsets))] for _ in range(args.num_classes)] for img_idx in range(len(dsets)): print('loading {}/{} image'.format(img_idx, len(dsets))) ori_img = dsets.load_img(img_idx) h,w,c = ori_img.shape inputs, gt_bboxes, gt_labels = dsets.__getitem__(img_idx) # [3, 512, 640], [3, 4], [3, 1] inputs = inputs.unsqueeze(0).to(device) with torch.no_grad(): locs, conf = model(inputs) detections = detector(locs, conf, anchors) for cls_idx in range(1, detections.size(1)): dets = detections[0, cls_idx, :] mask = dets[:, 0].gt(0.).expand(5, dets.size(0)).t() dets = torch.masked_select(dets, mask).view(-1, 5) if dets.shape[0] == 0: continue pred_boxes = dets[:, 1:].cpu().numpy().astype(np.float32) pred_score = dets[:, 0].cpu().numpy() pred_boxes[:,0] /= args.img_height pred_boxes[:,1] /= args.img_width pred_boxes[:,2] /= args.img_height pred_boxes[:,3] /= args.img_width pred_boxes[:,0] *= h pred_boxes[:,1] *= w pred_boxes[:,2] *= h pred_boxes[:,3] *= w cls_dets = np.hstack((pred_boxes, pred_score[:, np.newaxis])).astype(np.float32, copy=False) all_boxes[cls_idx][img_idx] = cls_dets with open(det_file, 'wb') as f: pickle.dump(all_boxes, f, pickle.HIGHEST_PROTOCOL) f.close() for cls_ind, cls in enumerate(dsets.labelmap): filename = dec_eval.get_voc_results_file_template('test', cls, args.cacheDir) with open(filename, 'wt') as f: for im_ind, index in enumerate(dsets.img_files): dets = all_boxes[cls_ind + 1][im_ind] if dets == []: continue for k in range(dets.shape[0]): # format: [img_file confidence, y1, x1, y2, x2] save to call for multiple times f.write('{:s} {:.3f} {:.1f} {:.1f} {:.1f} {:.1f}\n'.format(index, dets[k, -1], dets[k, 0], dets[k, 1], dets[k, 2], dets[k, 3])) ap05, ap07 = dec_eval.do_python_eval(dsets=dsets, output_dir=args.cacheDir, offline=True, use_07=True)
def train(args): if not os.path.exists(args.weightDst): os.mkdir(args.weightDst) data_transforms = { 'train': dec_transforms.Compose([ dec_transforms.ConvertImgFloat(), dec_transforms.PhotometricDistort(), dec_transforms.Expand(), dec_transforms.RandomSampleCrop(), dec_transforms.RandomMirror_w(), dec_transforms.RandomMirror_h(), dec_transforms.Resize(args.img_height, args.img_width), dec_transforms.ToTensor() ]), 'val': dec_transforms.Compose([ dec_transforms.ConvertImgFloat(), dec_transforms.Resize(args.img_height, args.img_width), dec_transforms.ToTensor() ]) } dsets = { 'train': NucleiCell(args.trainDir, args.annoDir, data_transforms['train'], imgSuffix=args.imgSuffix, annoSuffix=args.annoSuffix), 'val': NucleiCell(args.valDir, args.annoDir, data_transforms['val'], imgSuffix=args.imgSuffix, annoSuffix=args.annoSuffix) } dataloader = torch.utils.data.DataLoader(dsets['train'], batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers, collate_fn=collater, pin_memory=True) model = dec_net.resnetssd50(pretrained=True, num_classes=args.num_classes) device = torch.device("cuda:1" if torch.cuda.is_available() else "cpu") if args.multi_gpu: model = nn.DataParallel(model) model = model.to(device) optimizer = optim.SGD(model.parameters(), lr=args.init_lr, momentum=0.9) scheduler = lr_scheduler.MultiStepLR( optimizer, milestones=[args.decayEpoch, args.num_epochs], gamma=0.1) criterion = DecLoss(img_height=args.img_height, img_width=args.img_width, num_classes=args.num_classes, variances=[0.1, 0.2]) if args.vis: cv2.namedWindow('img') for idx in range(len(dsets['train'])): img, bboxes, labels = dsets['train'].__getitem__(idx) img = img.numpy().transpose(1, 2, 0) * 255 bboxes = bboxes.numpy() labels = labels.numpy() for bbox in bboxes: y1, x1, y2, x2 = bbox cv2.rectangle(img, (x1, y1), (x2, y2), (255, 255, 255), 2, lineType=1) cv2.imshow('img', np.uint8(img)) k = cv2.waitKey(0) if k & 0xFF == ord('q'): cv2.destroyAllWindows() exit() cv2.destroyAllWindows() # for validation data ----------------------------------- detector = Detect(num_classes=args.num_classes, top_k=args.top_k, conf_thresh=args.conf_thresh, nms_thresh=args.nms_thresh, variance=[0.1, 0.2]) anchorGen = Anchors(args.img_height, args.img_width) anchors = anchorGen.forward() if not os.path.exists(args.cacheDir): os.mkdir(args.cacheDir) # -------------------------------------------------------- train_loss_dict = [] ap05_dict = [] ap07_dict = [] writer = SummaryWriter('/data2/coldplay/dsb_cell/scalar') for epoch in range(args.num_epochs): print('Epoch {}/{}'.format(epoch, args.num_epochs - 1)) print('-' * 10) for phase in ['train', 'val']: if phase == 'train': scheduler.step() model.train() running_loss = 0.0 for inputs, bboxes, labels in dataloader: inputs = inputs.to(device) # zero the parameter gradients optimizer.zero_grad() # forward # track history if only in train with torch.set_grad_enabled(phase == 'train'): outputs = model(inputs) loss_locs, loss_conf = criterion( outputs, bboxes, labels) loss = loss_locs + loss_conf # backward + optimize only if in training phase if phase == 'train': loss.backward() optimizer.step() # statistics running_loss += loss.item() * inputs.size(0) epoch_loss = running_loss / len(dsets[phase]) print('{} Loss: {:.4f}'.format(phase, epoch_loss)) train_loss_dict.append(epoch_loss) np.savetxt('/data2/coldplay/dsb_cell/train_loss.txt', train_loss_dict, fmt='%.6f') writer.add_scalar('/data2/coldplay/dsb_cell/scalar/train', epoch_loss, epoch) if epoch % 5 == 0: torch.save( model.state_dict(), os.path.join( args.weightDst, '{:d}_{:.4f}_model.pth'.format(epoch, epoch_loss))) torch.save(model.state_dict(), os.path.join(args.weightDst, 'end_model.pth')) else: model.eval() # Set model to evaluate mode model.eval() # Set model to evaluate mode det_file = os.path.join(args.cacheDir, 'detections.pkl') all_boxes = [[[] for _ in range(len(dsets['val']))] for _ in range(args.num_classes)] for img_idx in range(len(dsets['val'])): ori_img = dsets['val'].load_img(img_idx) h, w, c = ori_img.shape inputs, gt_bboxes, gt_labels = dsets['val'].__getitem__( img_idx) # [3, 512, 640], [3, 4], [3, 1] # run model inputs = inputs.unsqueeze(0).to(device) with torch.no_grad(): locs, conf = model(inputs) detections = detector(locs, conf, anchors) for cls_idx in range(1, detections.size(1)): dets = detections[0, cls_idx, :] mask = dets[:, 0].gt(0.).expand(5, dets.size(0)).t() dets = torch.masked_select(dets, mask).view(-1, 5) if dets.shape[0] == 0: continue pred_boxes = dets[:, 1:].cpu().numpy() pred_score = dets[:, 0].cpu().numpy() pred_boxes[:, 0] /= args.img_height pred_boxes[:, 1] /= args.img_width pred_boxes[:, 2] /= args.img_height pred_boxes[:, 3] /= args.img_width pred_boxes[:, 0] *= h pred_boxes[:, 1] *= w pred_boxes[:, 2] *= h pred_boxes[:, 3] *= w cls_dets = np.hstack( (pred_boxes, pred_score[:, np.newaxis])).astype(np.float32, copy=False) all_boxes[cls_idx][img_idx] = cls_dets with open(det_file, 'wb') as f: pickle.dump(all_boxes, f, pickle.HIGHEST_PROTOCOL) f.close() for cls_ind, cls in enumerate(dsets['val'].labelmap): filename = dec_eval.get_voc_results_file_template( 'test', cls, args.cacheDir) with open(filename, 'wt') as f: for im_ind, index in enumerate(dsets['val'].img_files): dets = all_boxes[cls_ind + 1][im_ind] if dets == []: continue for k in range(dets.shape[0]): # format: [img_file confidence, y1, x1, y2, x2] save to call for multiple times f.write( '{:s} {:.3f} {:.1f} {:.1f} {:.1f} {:.1f}\n' .format(index, dets[k, -1], dets[k, 0], dets[k, 1], dets[k, 2], dets[k, 3])) ap05, ap07 = dec_eval.do_python_eval(dsets=dsets['val'], output_dir=args.cacheDir, offline=False, use_07=True) print('ap05:{:.4f}, ap07:{:.4f}'.format(ap05, ap07)) writer.add_scalar('/data2/coldplay/dsb_cell/scalar/val_ap05', ap05, epoch) writer.add_scalar('/data2/coldplay/dsb_cell/scalar/val_ap07', ap07, epoch) if ap05 > 0.71: print('ap05:{:.4f}'.format(ap05)) torch.save( model.state_dict(), os.path.join( args.weightDst, '{:d}_{:.4f}_model.pth'.format(epoch, epoch_loss))) ap05_dict.append(ap05) np.savetxt('/data2/coldplay/dsb_cell/ap_05.txt', ap05_dict, fmt='%.6f') ap07_dict.append(ap07) np.savetxt('/data2/coldplay/dsb_cell/ap_07.txt', ap07_dict, fmt='%.6f') print('Finish')
num_classes = 2 dec_weights = r"C:\Users\USER\Documents\studia\zaklad\EC_rainbow\ANCIS-Pytorch\dec0\end_model.pth" # -----------------load detection model ------------------------- device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") dec_model = dec_net.resnetssd50(pretrained=False, num_classes=num_classes) dec_model = load_dec_weights(dec_model, dec_weights) dec_model = dec_model.to(device) dec_model.eval() r = r"C:\Users\USER\Documents\studia\zaklad\EC_rainbow\cells" annoDir = os.path.join(r, r"GT\F0") valDir = os.path.join(r, r"test_f\F0") data_transforms = dec_transforms.Compose([dec_transforms.ToTensor()]) dset = dec_dataset_kaggle.NucleiCell(valDir, annoDir, data_transforms, imgSuffix=".tif", annoSuffix=".tif", trainb=False) data, bbox, label = dset[1] with torch.no_grad(): locs, conf = dec_model(data.unsqueeze(0).to(device)) h, w, c = data.shape
def test(args): data_transforms = dec_transforms.Compose([ dec_transforms.ConvertImgFloat(), dec_transforms.Resize(args.img_height, args.img_width), dec_transforms.ToTensor() ]) dsets = dec_dataset_kaggle.NucleiCell(args.testDir, args.annoDir, data_transforms, imgSuffix=args.imgSuffix, annoSuffix=args.annoSuffix) model = dec_net.resnetssd50(pretrained=True, num_classes=args.num_classes) print('Resuming training weights from {} ...'.format(args.resume)) pretrained_dict = torch.load(args.resume) model_dict = model.state_dict() trained_dict = {k[7:]: v for k, v in pretrained_dict.items()} model_dict.update(trained_dict) model.load_state_dict(model_dict) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model = model.to(device) model.eval() detector = Detect(num_classes=args.num_classes, top_k=args.top_k, conf_thresh=args.conf_thresh, nms_thresh=args.nms_thresh, variance=[0.1, 0.2]) anchorGen = Anchors(args.img_height, args.img_width) anchors = anchorGen.forward() cv2.namedWindow('img') for img_idx in range(len(dsets)): ori_img = dsets.load_img(img_idx) h, w, c = ori_img.shape inputs, gt_bboxes, gt_labels = dsets.__getitem__( img_idx) # [3, 512, 640], [3, 4], [3, 1] inputs = inputs.unsqueeze(0).to(device) with torch.no_grad(): locs, conf = model(inputs) detections = detector(locs, conf, anchors) for cls_idx in range(1, detections.size(1)): dets = detections[0, cls_idx, :] mask = dets[:, 0].gt(0.).expand(5, dets.size(0)).t() dets = torch.masked_select(dets, mask).view(-1, 5) if dets.shape[0] == 0: continue dets = dets.cpu().numpy() for i in range(dets.shape[0]): box = dets[i, 1:] score = dets[i, 0] y1, x1, y2, x2 = box y1 = float(y1) / args.img_height x1 = float(x1) / args.img_width y2 = float(y2) / args.img_height x2 = float(x2) / args.img_width y1 = int(float(y1) * h) x1 = int(float(x1) * w) y2 = int(float(y2) * h) x2 = int(float(x2) * w) cv2.rectangle(ori_img, (x1, y1), (x2, y2), (0, 255, 0), 2, 2) cv2.putText(ori_img, "%.2f" % score, (x1, y1 + 20), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 0, 255)) cv2.imshow('img', ori_img) k = cv2.waitKey(0) if k & 0xFF == ord('q'): cv2.destroyAllWindows() exit() cv2.destroyAllWindows() exit()