def setUp(self):
     self._layers = pickle.load(
         open(os.path.join(_TEST_DATA_DIR, 'layers.pickle')))
     self._data = pickle.load(
         open(os.path.join(_TEST_DATA_DIR, 'data', 'data_batch_5')))
     self._decaf_data = translator.imgs_cudaconv_to_decaf(
         self._data['data'][:_BATCH_SIZE], 32, 3)
     #self._decaf_labels = self._data['labels'].flatten()[:_BATCH_SIZE]
     #self._decaf_labels = self._decaf_labels.astype(np.int)
     self._output_shapes = {'data': (32, 32, 3), 'labels': -1}
     self._net = translator.translate_cuda_network(self._layers,
                                                   self._output_shapes)
     self._net.predict(data=self._decaf_data)
 def setUp(self):
     self._layers = pickle.load(open(os.path.join(_TEST_DATA_DIR,
                                                  'layers.pickle')))
     self._data = pickle.load(open(os.path.join(_TEST_DATA_DIR,
                                                'data',
                                                'data_batch_5')))
     self._decaf_data = translator.imgs_cudaconv_to_decaf(
         self._data['data'][:_BATCH_SIZE], 32, 3)
     #self._decaf_labels = self._data['labels'].flatten()[:_BATCH_SIZE]
     #self._decaf_labels = self._decaf_labels.astype(np.int)
     self._output_shapes = {'data': (32, 32, 3), 'labels': -1}
     self._net = translator.translate_cuda_network(
         self._layers, self._output_shapes)
     self._net.predict(data=self._decaf_data)
 def _testSingleLayer(self, decaf_name, cuda_name, reshape_size=0,
                      reshape_channels=0, decimal=6):
     output = self._net.feature(self._net.provides[decaf_name][0])
     self.assertEqual(output.shape[1:], self._output_shapes[decaf_name])
     ref_data = pickle.load(open(
         os.path.join(_TEST_DATA_DIR, cuda_name, 'data_batch_5')))
     ref_data = ref_data['data'][:_BATCH_SIZE]
     if reshape_size:
         ref_data = translator.imgs_cudaconv_to_decaf(
             ref_data, reshape_size, reshape_channels)
     # We rescale the data so that the decimal specified would also count
     # the original scale of the data.
     maxval = ref_data.max()
     ref_data /= maxval
     output /= maxval
     #print 'data range: [%f, %f], max diff: %f' % (
     #    ref_data.min(), ref_data.max(), np.abs(ref_data - output).max())
     np.testing.assert_array_almost_equal(ref_data, output, decimal)
 def _testSingleLayer(self,
                      decaf_name,
                      cuda_name,
                      reshape_size=0,
                      reshape_channels=0,
                      decimal=6):
     output = self._net.feature(self._net.provides[decaf_name][0])
     self.assertEqual(output.shape[1:], self._output_shapes[decaf_name])
     ref_data = pickle.load(
         open(os.path.join(_TEST_DATA_DIR, cuda_name, 'data_batch_5')))
     ref_data = ref_data['data'][:_BATCH_SIZE]
     if reshape_size:
         ref_data = translator.imgs_cudaconv_to_decaf(
             ref_data, reshape_size, reshape_channels)
     # We rescale the data so that the decimal specified would also count
     # the original scale of the data.
     maxval = ref_data.max()
     ref_data /= maxval
     output /= maxval
     #print 'data range: [%f, %f], max diff: %f' % (
     #    ref_data.min(), ref_data.max(), np.abs(ref_data - output).max())
     np.testing.assert_array_almost_equal(ref_data, output, decimal)