Example #1
0
    def test_field_kwargs(self):
        vl1, vl2 = [Dc('3.1'), Dc('1.3')], [Dc('3.14'), Dc('1')]
        da1, da2 = [DecimalArray.create(values=vl) for vl in (vl1, vl2)]

        da1_db = DecimalArray.get(DecimalArray.id == da1.id)
        da2_db = DecimalArray.get(DecimalArray.id == da2.id)
        self.assertEqual(da1_db.values, [Dc('3.1'), Dc('1.3')])
        self.assertEqual(da2_db.values, [Dc('3.1'), Dc('1.0')])
def draw_bubble(C, l, h, mu, eta, show):
    Xlist = []
    Zlist = []
    theta = Dc(0)
    dh = Dc(10**-3)
    y = get_Y(theta, C)
    y0 = get_Y(eta / 2 * mu, C) / mu
    while (theta < eta / Dc(2) and y > 0):
        y = get_Y(theta * mu, C) / mu

        Xlist.append(float(y / y0))
        Zlist.append(float(theta))

        theta += dh

    errmax = get_errmax(C, l, h, eta * mu)

    if (Draw_bubbles_in_scale):
        scaleX = XSize / (2 * max(Xlist))
        scaleY = YSize / (max(Zlist) - min(Zlist))
        scale = min(scaleX, scaleY)
        X = scale * max(Xlist)
        Y = scale * (max(Zlist) - min(Zlist))

        fig = plt.gcf()
        fig.set_size_inches(X, Y)
        axs = fig.add_axes([0.1, 0.1, 0.8, 0.8])
    else:
        axs = plt.gcf().add_axes([0.1, 0.1, 0.8, 0.8])

    axs.plot([0], [0])
    axs.plot(Xlist, Zlist, color='b')
    axs.plot(list(map(lambda Z: -Z, Xlist)), Zlist, color='b')
    axs.plot(Xlist, list(map(lambda Z: -Z, Zlist)), color='b')
    axs.plot(list(map(lambda Z: -Z, Xlist)),
             list(map(lambda Z: -Z, Zlist)),
             color='b')
    plt.xlabel('r / R')
    plt.ylabel('Z / R')
    plt.title('Slice of a bubble\n' + r'$\Lambda = $' + str(round(l, 3)) +
              r'   $\eta = $' + str(round(eta, 3)) + r'   $\mu = $' +
              str(round(mu, 3)) + '   ' + r'$|\Delta|\eqslantless$ ' +
              Str(abs(errmax), 3))

    if (show):
        plt.show()
def draw_multiple_bubbles(C, l, h, mulist, eta):
    errmax = 0
    for mu in mulist:
        mu = Dc(mu)

        Xlist = []
        Zlist = []
        theta = Dc(0)
        dh = Dc(10**-3)
        y = get_Y(theta, C)
        y0 = get_Y(eta / 2 * mu, C) / mu
        while (theta < eta / Dc(2) and y > 0):
            y = get_Y(theta * mu, C) / mu

            Xlist.append(float(y / y0))
            Zlist.append(float(theta))

            theta += dh

        errmax = max(errmax, abs(get_errmax(C, l, h, eta * mu)))

        plt.plot(Xlist, Zlist, color='b')
        plt.plot(list(map(lambda Z: -Z, Xlist)), Zlist, color='b')
        plt.plot(Xlist, list(map(lambda Z: -Z, Zlist)), color='b')
        plt.plot(list(map(lambda Z: -Z, Xlist)),
                 list(map(lambda Z: -Z, Zlist)),
                 color='b')

    possible_mu = ''
    for mu in mulist[:-1]:
        possible_mu += str(round(mu, 3))
        possible_mu += ' or '
    possible_mu += str(round(mulist[-1], 3))

    plt.plot([0], [0])
    plt.xlabel('r / R')
    plt.ylabel('Z / R')
    plt.title('Slice of a bubble\n' + r'$\Lambda = $' + str(round(l, 3)) +
              r'   $\eta = $' + str(round(eta, 3)) + r'   $\mu = $' +
              possible_mu + '   ' + r'$|\Delta|\eqslantless$ ' +
              Str(abs(errmax), 3))

    plt.show()
def plot_Y(C, l, h, eta, show):
    Xlist = []
    Zlist = []
    theta = Dc(0)
    dh = Dc(10**-3)
    y = get_Y(theta, C)
    while (theta < eta / 2):
        y = get_Y(theta, C)

        Xlist.append(float(theta))
        Zlist.append(float(y))

        theta += dh

    errmax = get_errmax(C, l, h, eta)

    plt.plot(Xlist, Zlist, color='b')
    plt.xlabel(r'$\theta$')
    plt.ylabel(r'$\Upsilon$')
    plt.title(r'Graph of $\Upsilon$' + '\n' + r'$\Lambda = $' +
              str(round(l, 3)) + r'   $\eta = $' + str(round(eta, 3)) + '   ' +
              r'$|\Delta|\eqslantless$ ' + Str(abs(errmax), 3))
    if (show):
        plt.show()
def zeta(z, fun, order):  # this one is very messy
    out = Dc(0)

    if (order == 2):
        for n in range(int((z + 1) / 2)):
            out += Dc(2) * fun(n) * fun(z - n)

        if (z % 2 == 0):  # if z is even
            out += fun(int(z / 2))**2

    elif (order == 4):
        for a in range(int((z + 1) / 2)):
            f_z_a_2 = fun(int((z - a) / 2))**2

            for b in range(int((a + 1) / 2)):
                f_a_b = fun(a - b)
                f_b = fun(b)

                for c in range(int((z - a + 1) / 2)):
                    out += Dc(8) * f_a_b * f_b * fun(c) * fun(z - a - c)

                if ((z - a) % 2 == 0):
                    out += Dc(4) * f_a_b * f_b * f_z_a_2

            if (a % 2 == 0):
                f_a_2_2 = fun(int(a / 2))**2
                for c in range(int((z - a + 1) / 2)):
                    out += Dc(4) * f_a_2_2 * fun(c) * fun(z - a - c)

                if ((z - a) % 2 == 0):
                    out += Dc(2) * f_a_2_2 * f_z_a_2

        if (z % 2 == 0):  # if z is even
            if (z % 4 == 0):
                f_z4_2 = fun(int(z / 4))**2

            for b in range(int(z / 2) + 1):
                f_b = fun(b)
                f_z2_b = fun(int(z / 2) - b)

                for c in range(int((int(z / 2) + 1) / 2)):
                    out += Dc(2) * f_z2_b * f_b * fun(c) * fun(int(z / 2) - c)

                if (z % 4 == 0):
                    out += f_z2_b * f_b * f_z4_2

    else:
        raise RuntimeError

    return out
def calculate_C(l, h):
    C = [Dc(0)] * (MaxPower + 1)
    C[0] = Dc(1)
    C[1] = sqrt((Dc(1) / (l + h))**2 - Dc(1))
    A = Dc(-2) * C[1] * (l + h)**2
    B = l**2
    D = Dc(2) * l * h
    E = Dc(2) * l * h - Dc(1)
    F = (l + h)**2
    for z in range(1, MaxPower):
        k = tuple(C)

        S1 = Dc(0)
        for n in range(z):
            S1 += zeta(n, lambda i: Dc(i + 1) * k[i + 1],
                       2) * (B * zeta(z - n, lambda i: k[i], 4) +
                             D * zeta(z - n, lambda i: k[i], 2))

        S2 = Dc(0)
        for n in range(int((z - 1) / 2)):
            S2 += Dc(2) * k[n + 2] * k[z - n] * Dc(n + 2) * Dc(z - n)
        if (z % 2 == 0):
            S2 += (k[int(z / 2) + 1] * Dc(int(z / 2) + 1))**2
        S2 *= F

        c_new = (S1 + S2 + B * zeta(z, lambda i: k[i], 4) +
                 E * zeta(z, lambda i: k[i], 2)) / A / Dc(z + 1)

        C[z + 1] = c_new

    return tuple(C)
from decimal import *
from math import ceil

getcontext().prec = 600

YSize = 9  # maximal allowable graph window width
XSize = 12  # maximal allowable graph window height
Draw_bubbles_in_scale = False  # if True, bubbles will be drawn in their real proportions
# if False, scale will be chosen by matplotlib
# try to experiment with it, that`s safe

MaxPower = 36  # determines what maximal power of theta will be taken into account
Margin = 10**-2  # maximal allowable error (Delta)
# if Delta > Margin, the calculation is discarded

Eta = Dc(1.2)  # Eta = Delta_z / R
L = Dc(0.7)  # L is Lambda
H = (Dc(1) - L) * Dc(0.999999999)


def zeta(z, fun, order):  # this one is very messy
    out = Dc(0)

    if (order == 2):
        for n in range(int((z + 1) / 2)):
            out += Dc(2) * fun(n) * fun(z - n)

        if (z % 2 == 0):  # if z is even
            out += fun(int(z / 2))**2

    elif (order == 4):