def main(): print ("-- Regression Tree --") # Load temperature data data = pd.read_csv('../TempLinkoping2016.txt', sep="\t") time = np.atleast_2d(data["time"].as_matrix()).T temp = np.atleast_2d(data["temp"].as_matrix()).T X = standardize(time) # Time. Fraction of the year [0, 1] y = temp[:, 0] # Temperature. Reduce to one-dim X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3) model = RegressionTree() model.fit(X_train, y_train) y_pred = model.predict(X_test) y_pred_line = model.predict(X) # Color map cmap = plt.get_cmap('viridis') mse = mean_squared_error(y_test, y_pred) print ("Mean Squared Error:", mse) # Plot the results # Plot the results m1 = plt.scatter(366 * X_train, y_train, color=cmap(0.9), s=10) m2 = plt.scatter(366 * X_test, y_test, color=cmap(0.5), s=10) m3 = plt.scatter(366 * X_test, y_pred, color='black', s=10) plt.suptitle("Regression Tree") plt.title("MSE: %.2f" % mse, fontsize=10) plt.xlabel('Day') plt.ylabel('Temperature in Celcius') plt.legend((m1, m2, m3), ("Training data", "Test data", "Prediction"), loc='lower right') plt.show()
def __init__(self, n_estimators, learning_rate, min_samples_split, min_impurity, max_depth, regression): self.n_estimators = n_estimators self.learning_rate = learning_rate self.min_samples_split = min_samples_split self.min_impurity = min_impurity self.max_depth = max_depth self.regression = regression self.bar = progressbar.ProgressBar(widgets=bar_widgets) self.loss = SquareLoss() #回归树残差 -(y - y_pred) if not self.regression: #分类树残差 y - p self.loss = SotfMaxLoss() #分类问题也使用回归树,利用残差去学习概率 self.trees = [] for i in range(self.n_estimators): self.trees.append( RegressionTree(min_samples_split=self.min_samples_split, min_impurity=self.min_impurity, max_depth=self.max_depth))
def __init__(self, n_estimators, learning_rate, min_samples_split, min_impurity, max_depth, regression): self.n_estimators = n_estimators self.learning_rate = learning_rate self.min_samples_split = min_samples_split self.min_impurity = min_impurity self.max_depth = max_depth self.regression = regression self.bar = progressbar.ProgressBar(widgets=bar_widgets) if self.regression: self.loss = SquareLoss() else: self.loss = SotfMaxLoss() # also use RegressionTree for classification problems, we study the probability self.trees = [ RegressionTree(min_samples_split=self.min_samples_split, min_impurity=self.min_impurity, max_depth=self.max_depth) for _ in range(self.n_estimators) ]
def main(): print("-- Regression Tree --") # Load temperature data data = pd.read_csv('../TempLinkoping2016.txt', sep="\t") time = np.atleast_2d(data["time"].as_matrix()).T temp = np.atleast_2d(data["temp"].as_matrix()).T X = standardize(time) # Time. Fraction of the year [0, 1] y = temp[:, 0] # Temperature. Reduce to one-dim X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3) model = RegressionTree() model.fit(X_train, y_train) y_pred = model.predict(X_test) y_pred_line = model.predict(X) # Color map cmap = plt.get_cmap('viridis') mse = mean_squared_error(y_test, y_pred) print("Mean Squared Error:", mse) # Plot the results # Plot the results m1 = plt.scatter(366 * X_train, y_train, color=cmap(0.9), s=10) m2 = plt.scatter(366 * X_test, y_test, color=cmap(0.5), s=10) m3 = plt.scatter(366 * X_test, y_pred, color='black', s=10) plt.suptitle("Regression Tree") plt.title("MSE: %.2f" % mse, fontsize=10) plt.xlabel('Day') plt.ylabel('Temperature in Celcius') plt.legend((m1, m2, m3), ("Training data", "Test data", "Prediction"), loc='lower right') plt.show()