def experiment(): accuracy = [[], []] for i in range(2): for j in range(0, 6): cost_mode = "gini-index" if i == 0 else "cross-entropy" acc = main(cost_mode=cost_mode, max_depth=j) accuracy[i].append(acc) print(accuracy) return accuracy
df_train = pd.DataFrame(X_train) df_train.columns = feature_names df_train['class'] = y_train df_train.to_csv(data_file_train) df_valid = pd.DataFrame(X_valid) df_valid.columns = feature_names df_valid['class'] = y_valid df_valid.to_csv(data_file_valid) df_test = pd.DataFrame(X_test) df_test.columns = feature_names df_test['class'] = y_test df_test.to_csv(data_file_test) ##### learning the tree and testing # add command line in debug/run arguments as: https://github.com/ryanmadden/decision-tree import decision_tree decision_tree.main() # the result -> results.csv from sklearn import metrics df_result = pd.read_csv(open('results.csv', 'r')) y_pred = df_result['class'].values accuracy = metrics.accuracy_score(y_test, y_pred) print('accuracy of C4.5 tree: %.3f' % accuracy) print(' - PY131 -')
def main(): decision_tree.main() neural_network.main() k_nearest_neighbors.main() boosted_dtree.main() svm.main()
def train_decision_tree(X, y, tscv, grid_search=False): import decision_tree as dtree dtree.main(X, y, tscv.split(X)) if grid_search: dtree.grid_search(X, y, tscv.split(X))