def test_create_homology_targets(self):
    hom_fn = align_transforms.CreateHomologyTargets()

    values = tf.repeat([0, 1, 2, 3], 2)
    expected_output = tf.convert_to_tensor([1, 1, 1, 1, 0, 0, 0, 0], tf.float32)
    expected_output = expected_output[:, tf.newaxis]
    self.assertAllEqual(hom_fn.call(values), expected_output)

    values = tf.repeat([0, 1, 2, 0], 2)
    expected_output = tf.convert_to_tensor([1, 1, 1, 1, 1, 0, 0, 0], tf.float32)
    expected_output = expected_output[:, tf.newaxis]
    self.assertAllEqual(hom_fn.call(values), expected_output)

    hom_fn = align_transforms.CreateHomologyTargets(process_negatives=False)
    self.assertAllEqual(hom_fn.call(values),
                        tf.ones([len(values) // 2, 1], tf.float32))
Example #2
0
def make_fake_builder(max_len = 512):
  return builder.DatasetBuilder(
      data_loader=FakePairsLoader(max_len=max_len),
      labels=multi_task.Backbone(alignments=[
          ('alignment/targets', 'alignment/weights'),
          'homology/targets']),
      batched_transformations=[
          transforms.Reshape(shape=(-1, max_len), on='sequence'),
          transforms.Reshape(shape=(-1,), on='fam_key'),
          align_transforms.CreateBatchedWeights(
              on='alignment/targets', out='alignment/weights'),
          align_transforms.PadNegativePairs(
              on=['alignment/targets', 'alignment/weights']),
          align_transforms.PadNegativePairs(
              value=-1.0, on=['alignment/pid1', 'alignment/pid3']),
          align_transforms.CreateHomologyTargets(
              process_negatives=True, on='fam_key', out='homology/targets'),
      ],
      metadata=('alignment/pid1', 'alignment/pid3'),
      split='train')
Example #3
0
def make_pair_builder(max_len=512,
                      index_keys=('fam_key', 'ci_100'),
                      process_negatives=True,
                      gap_token='-',
                      sequence_key='sequence',
                      context_sequence_key='full_sequence',
                      loader_cls=make_pfam_pairs_loader,
                      pairing_cls=None,
                      lm_cls=None,
                      has_context=False,
                      append_eos=True,
                      append_eos_context=True,
                      add_random_tails=False,
                      **kwargs):
    """Creates a dataset for pairs of sequences."""
    # Convenience function to index key pairs.
    paired_keys = lambda k: tuple(f'{k}_{i}' for i in (1, 2))

    def stack_and_pop(on):
        stack = transforms.Stack(on=paired_keys(on), out=on)
        pop = transforms.Pop(on=paired_keys(on))
        return [stack, pop]

    # Defines fields to be read from the TFRecords.
    metadata_keys = ['cla_key', 'seq_key'] + list(index_keys)
    extra_keys = metadata_keys.copy()
    # Pre-paired datasets already been filtered by length, seq_len only needed
    # when pairing sequences on-the-fly.
    if pairing_cls is not None:
        extra_keys.append('seq_len')
    # Optionally, adds fields needed by the `AddAlignmentContext` `Transform`.
    if has_context:
        extra_keys.extend(['start', 'end'])
    add_alignment_context_extra_args = (paired_keys(context_sequence_key) +
                                        paired_keys('start') +
                                        paired_keys('end'))
    # Accounts for EOS token if necessary.
    max_len_eos = max_len - 1 if append_eos else max_len

    ### Sets up the `DatasetTransform`s.

    ds_transformations = []
    if pairing_cls is not None:
        filter_by_length = transforms.FilterByLength(max_len=max_len_eos)
        # NOTE(fllinares): pairing on-the-fly is memory intensive on TPU for some
        # reason not yet understood...
        pair_sequences = pairing_cls(index_keys=index_keys)
        ds_transformations.extend([filter_by_length, pair_sequences])

    ### Sets up the `Transform`s applied *before* batching.

    project_msa_rows = align_transforms.ProjectMSARows(
        on=paired_keys(sequence_key), token=gap_token)
    append_eos_to_context = transforms.EOS(
        on=paired_keys(context_sequence_key))
    add_alignment_context = align_transforms.AddAlignmentContext(
        on=paired_keys(sequence_key) + add_alignment_context_extra_args,
        out=paired_keys(sequence_key),
        max_len=max_len_eos,
        gap_token=gap_token)
    trim_alignment = align_transforms.TrimAlignment(
        on=paired_keys(sequence_key), gap_token=gap_token)
    pop_add_alignment_context_extra_args = transforms.Pop(
        on=add_alignment_context_extra_args)
    add_random_prefix_and_suffix = align_transforms.AddRandomTails(
        on=paired_keys(sequence_key), max_len=max_len_eos)
    create_alignment_targets = align_transforms.CreateAlignmentTargets(
        on=paired_keys(sequence_key),
        out='alignment/targets',
        gap_token=gap_token,
        n_prepend_tokens=0)
    pid1 = align_transforms.PID(on=paired_keys(sequence_key),
                                out='alignment/pid1',
                                definition=1,
                                token=gap_token)
    pid3 = align_transforms.PID(on=paired_keys(sequence_key),
                                out='alignment/pid3',
                                definition=3,
                                token=gap_token)
    remove_gaps = transforms.RemoveTokens(on=paired_keys(sequence_key),
                                          tokens=gap_token)
    append_eos_to_sequence = transforms.EOS(on=paired_keys(sequence_key))
    pad_sequences = transforms.CropOrPad(on=paired_keys(sequence_key),
                                         size=max_len)
    pad_alignment_targets = transforms.CropOrPadND(on='alignment/targets',
                                                   size=2 * max_len)

    transformations = [project_msa_rows]
    if has_context:
        if append_eos_context:
            transformations.append(append_eos_to_context)
        transformations.extend([
            add_alignment_context, trim_alignment,
            pop_add_alignment_context_extra_args
        ])
    if add_random_tails:
        transformations.append(add_random_prefix_and_suffix)
    transformations.append(create_alignment_targets)

    transformations.extend([pid1, pid3, remove_gaps])
    if append_eos:
        transformations.append(append_eos_to_sequence)
    transformations.extend([pad_sequences, pad_alignment_targets])
    for key in [sequence_key] + metadata_keys:
        transformations.extend(stack_and_pop(key))

    ### Sets up the `Transform`s applied *after* batching.

    flatten_sequence_pairs = transforms.Reshape(on=sequence_key,
                                                shape=[-1, max_len])
    flatten_metadata_pairs = transforms.Reshape(on=metadata_keys, shape=[-1])
    create_homology_targets = align_transforms.CreateHomologyTargets(
        on='fam_key',
        out='homology/targets',
        process_negatives=process_negatives)
    create_alignment_weights = align_transforms.CreateBatchedWeights(
        on='alignment/targets', out='alignment/weights')
    add_neg_alignment_targets_and_weights = align_transforms.PadNegativePairs(
        on=('alignment/targets', 'alignment/weights'))
    pad_neg_pid = align_transforms.PadNegativePairs(on=('alignment/pid1',
                                                        'alignment/pid3'),
                                                    value=-1.0)

    batched_transformations = [
        flatten_sequence_pairs, flatten_metadata_pairs, create_homology_targets
    ]
    if process_negatives:
        batched_transformations.extend([
            create_alignment_weights, add_neg_alignment_targets_and_weights,
            pad_neg_pid
        ])
    if lm_cls is not None:
        create_lm_targets = lm_cls(on=sequence_key,
                                   out=(sequence_key, 'masked_lm/targets',
                                        'masked_lm/weights'))
        batched_transformations.append(create_lm_targets)

    ### Sets up the remainder of the `DatasetBuilder` configuration.

    masked_lm_labels = ('masked_lm/targets', 'masked_lm/weights')
    alignment_labels = ('alignment/targets' if not process_negatives else
                        ('alignment/targets', 'alignment/weights'))
    homology_labels = 'homology/targets'
    embeddings = () if lm_cls is None else (masked_lm_labels, )
    alignments = (alignment_labels, homology_labels)

    return builder.DatasetBuilder(
        data_loader=loader_cls(extra_keys),
        ds_transformations=ds_transformations,
        transformations=transformations,
        batched_transformations=batched_transformations,
        labels=multi_task.Backbone(embeddings=embeddings,
                                   alignments=alignments),
        metadata=('seq_key', 'alignment/pid1', 'alignment/pid3'),
        sequence_key=sequence_key,
        **kwargs)