def test_sample_from_dataset_positive02(self): base_dir = os.path.join(os.path.dirname(__file__), 'testdata') _, y = load_dataset_from_json( os.path.join(base_dir, 'true_named_entities.json')) subset_index = sample_from_dataset(y=y, n=(len(y) + 1) * 2, n_restarts=10) self.assertIsInstance(subset_index, np.ndarray) self.assertEqual(len(y), len(subset_index)) self.assertEqual(set(range(len(y))), set(subset_index.tolist()))
def test_calculate_prediction_quality(self): base_dir = os.path.join(os.path.dirname(__file__), 'testdata') X_true, y_true = load_dataset_from_json(os.path.join(base_dir, 'true_named_entities.json')) X_pred, y_pred = load_dataset_from_json(os.path.join(base_dir, 'predicted_named_entities.json')) self.assertEqual(X_true, X_pred) f1, precision, recall, quality_by_entities = calculate_prediction_quality( y_true, y_pred, ('LOCATION', 'PERSON', 'ORG') ) self.assertIsInstance(f1, float) self.assertIsInstance(precision, float) self.assertIsInstance(recall, float) self.assertAlmostEqual(f1, 0.842037, places=3) self.assertAlmostEqual(precision, 0.908352, places=3) self.assertAlmostEqual(recall, 0.784746, places=3) self.assertIsInstance(quality_by_entities, dict) self.assertEqual({'LOCATION', 'PERSON', 'ORG'}, set(quality_by_entities.keys())) f1_macro = 0.0 precision_macro = 0.0 recall_macro = 0.0 for ne_type in quality_by_entities: self.assertIsInstance(quality_by_entities[ne_type], tuple) self.assertEqual(len(quality_by_entities[ne_type]), 3) self.assertIsInstance(quality_by_entities[ne_type][0], float) self.assertIsInstance(quality_by_entities[ne_type][1], float) self.assertIsInstance(quality_by_entities[ne_type][2], float) self.assertLess(quality_by_entities[ne_type][0], 1.0) self.assertGreater(quality_by_entities[ne_type][0], 0.0) self.assertLess(quality_by_entities[ne_type][1], 1.0) self.assertGreater(quality_by_entities[ne_type][1], 0.0) self.assertLess(quality_by_entities[ne_type][2], 1.0) self.assertGreater(quality_by_entities[ne_type][2], 0.0) f1_macro += quality_by_entities[ne_type][0] precision_macro += quality_by_entities[ne_type][1] recall_macro += quality_by_entities[ne_type][2] f1_macro /= float(len(quality_by_entities)) precision_macro /= float(len(quality_by_entities)) recall_macro /= float(len(quality_by_entities)) for ne_type in quality_by_entities: self.assertGreater(abs(quality_by_entities[ne_type][0] - f1_macro), 1e-4) self.assertGreater(abs(quality_by_entities[ne_type][1] - precision_macro), 1e-4) self.assertGreater(abs(quality_by_entities[ne_type][2] - recall_macro), 1e-4)
def test_sample_from_dataset_positive01(self): base_dir = os.path.join(os.path.dirname(__file__), 'testdata') _, y = load_dataset_from_json( os.path.join(base_dir, 'true_named_entities.json')) subset_index = sample_from_dataset(y=y, n=3, n_restarts=10) self.assertIsInstance(subset_index, np.ndarray) self.assertEqual(3, len(subset_index)) self.assertGreater(len(y), len(subset_index)) self.assertEqual(len(subset_index), len(set(subset_index.tolist()))) true_set_of_classes = {'ORG', 'PERSON', 'LOCATION'} subset_of_classes = set() for idx in subset_index: subset_of_classes |= set(y[idx].keys()) self.assertEqual(true_set_of_classes, subset_of_classes)
def test_positive01(self): base_dir = os.path.join(os.path.dirname(__file__), 'testdata') _, y = load_dataset_from_json(os.path.join(base_dir, 'true_named_entities.json')) train_index, test_index = split_dataset(y, 0.3, 10) self.assertIsInstance(train_index, np.ndarray) self.assertIsInstance(test_index, np.ndarray) self.assertEqual(len(y), len(train_index) + len(test_index)) self.assertEqual(len(train_index), len(set(train_index.tolist()))) self.assertEqual(len(test_index), len(set(test_index.tolist()))) self.assertEqual(0, len(set(train_index.tolist()) & set(test_index.tolist()))) true_set_of_classes = {'ORG', 'PERSON', 'LOCATION'} set_of_classes_for_training = set() for idx in train_index: set_of_classes_for_training |= set(y[idx].keys()) set_of_classes_for_testing = set() for idx in test_index: set_of_classes_for_testing |= set(y[idx].keys()) self.assertEqual(set_of_classes_for_training, set_of_classes_for_testing) self.assertEqual(true_set_of_classes, set_of_classes_for_training) self.assertEqual(true_set_of_classes, set_of_classes_for_testing)
def train(factrueval2016_devset_dir: str, split_by_paragraphs: bool, elmo_will_be_tuned: bool, use_additional_features: bool, max_epochs: int, patience: int, batch_size: int, lr: float, l2: float, gpu_memory_frac: float, model_name: str, collection3_dir: Union[str, None] = None) -> ELMo_NER: if os.path.isfile(model_name): with open(model_name, 'rb') as fp: recognizer = pickle.load(fp) assert isinstance(recognizer, ELMo_NER) print('The NER has been successfully loaded from the file `{0}`...'. format(model_name)) print('') else: temp_json_name = tempfile.NamedTemporaryFile(mode='w').name try: factrueval2016_to_json(factrueval2016_devset_dir, temp_json_name, split_by_paragraphs) X, y = load_dataset_from_json(temp_json_name) finally: if os.path.isfile(temp_json_name): os.remove(temp_json_name) print('The FactRuEval-2016 data for training have been loaded...') print('Number of samples is {0}.'.format(len(y))) print('') max_number_of_tokens = 0 pipeline = create_udpipe_pipeline('ru') for cur in X: spacy_doc = pipeline(cur) n_tokens = 0 for _ in spacy_doc: n_tokens += 1 del spacy_doc if n_tokens > max_number_of_tokens: max_number_of_tokens = n_tokens del pipeline print('Maximal number of tokens is {0}.'.format(max_number_of_tokens)) n_tokens = 2 while n_tokens < max_number_of_tokens: n_tokens *= 2 elmo_hub_module_handle = 'http://files.deeppavlov.ai/deeppavlov_data/elmo_ru-news_wmt11-16_1.5M_steps.tar.gz' recognizer = ELMo_NER(finetune_elmo=elmo_will_be_tuned, batch_size=batch_size, l2_reg=l2, max_seq_length=n_tokens, elmo_hub_module_handle=elmo_hub_module_handle, validation_fraction=0.25, max_epochs=max_epochs, patience=patience, gpu_memory_frac=gpu_memory_frac, verbose=True, random_seed=42, lr=lr, udpipe_lang='ru', use_additional_features=use_additional_features) if collection3_dir is None: recognizer.fit(X, y) else: X_train, y_train = load_dataset_from_brat(collection3_dir, split_by_paragraphs=True) if not split_by_paragraphs: X_train, y_train = divide_dataset_by_sentences( X_train, y_train, sent_tokenize_func=ru_sent_tokenize) for sample_idx in range(len(y_train)): new_y_sample = dict() for ne_type in sorted(list(y_train[sample_idx].keys())): if ne_type == 'PER': new_y_sample['PERSON'] = y_train[sample_idx][ne_type] elif ne_type == 'LOC': new_y_sample['LOCATION'] = y_train[sample_idx][ne_type] else: new_y_sample[ne_type] = y_train[sample_idx][ne_type] y_train[sample_idx] = new_y_sample del new_y_sample print('The Collection3 data for training have been loaded...') print('Number of samples is {0}.'.format(len(y_train))) print('') recognizer.fit(X_train, y_train, validation_data=(X, y)) with open(model_name, 'wb') as fp: pickle.dump(recognizer, fp) print('') print( 'The NER has been successfully fitted and saved into the file `{0}`...' .format(model_name)) print('') return recognizer
def recognize(factrueval2016_testset_dir: str, split_by_paragraphs: bool, recognizer: ELMo_NER, results_dir: str): temp_json_name = tempfile.NamedTemporaryFile(mode='w').name try: factrueval2016_to_json(factrueval2016_testset_dir, temp_json_name, split_by_paragraphs) with codecs.open(temp_json_name, mode='r', encoding='utf-8', errors='ignore') as fp: data_for_testing = json.load(fp) _, true_entities = load_dataset_from_json(temp_json_name) finally: if os.path.isfile(temp_json_name): os.remove(temp_json_name) texts = [] additional_info = [] for cur_document in data_for_testing: base_name = os.path.join(results_dir, cur_document['base_name'] + '.task1') for cur_paragraph in cur_document['paragraph_bounds']: texts.append( cur_document['text'][cur_paragraph[0]:cur_paragraph[1]]) additional_info.append((base_name, cur_paragraph)) print('Data for final testing have been loaded...') print('Number of samples is {0}.'.format(len(true_entities))) print('') predicted_entities = recognizer.predict(texts) assert len(predicted_entities) == len(true_entities) f1, precision, recall, quality_by_entities = calculate_prediction_quality( true_entities, predicted_entities, recognizer.classes_list_) print('All entities:') print(' F1-score is {0:.2%}.'.format(f1)) print(' Precision is {0:.2%}.'.format(precision)) print(' Recall is {0:.2%}.'.format(recall)) for ne_type in sorted(list(quality_by_entities.keys())): print(' {0}'.format(ne_type)) print(' F1-score is {0:.2%}.'.format( quality_by_entities[ne_type][0])) print(' Precision is {0:.2%}.'.format( quality_by_entities[ne_type][1])) print(' Recall is {0:.2%}.'.format(quality_by_entities[ne_type][2])) results_for_factrueval_2016 = dict() for sample_idx, cur_result in enumerate(predicted_entities): base_name, paragraph_bounds = additional_info[sample_idx] for entity_type in cur_result: if entity_type == 'ORG': prepared_entity_type = 'org' elif entity_type == 'PERSON': prepared_entity_type = 'per' elif entity_type == 'LOCATION': prepared_entity_type = 'loc' else: prepared_entity_type = None if prepared_entity_type is None: raise ValueError( '`{0}` is unknown entity type!'.format(entity_type)) for entity_bounds in cur_result[entity_type]: postprocessed_entity = (prepared_entity_type, entity_bounds[0] + paragraph_bounds[0], entity_bounds[1] - entity_bounds[0]) if base_name in results_for_factrueval_2016: results_for_factrueval_2016[base_name].append( postprocessed_entity) else: results_for_factrueval_2016[base_name] = [ postprocessed_entity ] for base_name in results_for_factrueval_2016: with codecs.open(base_name, mode='w', encoding='utf-8', errors='ignore') as fp: for cur_entity in sorted(results_for_factrueval_2016[base_name], key=lambda it: (it[1], it[2], it[0])): fp.write('{0} {1} {2}\n'.format(cur_entity[0], cur_entity[1], cur_entity[2]))
def train(factrueval2016_devset_dir: str, split_by_paragraphs: bool, bert_will_be_tuned: bool, use_lang_features: bool, use_shapes: bool, lstm_layer_size: Union[int, None], l2: float, max_epochs: int, patience: int, batch_size: int, gpu_memory_frac: float, model_name: str, collection3_dir: Union[str, None] = None, n_max_samples: int = 0) -> BERT_NER: if os.path.isfile(model_name): with open(model_name, 'rb') as fp: recognizer = pickle.load(fp) assert isinstance(recognizer, BERT_NER) print('The NER has been successfully loaded from the file `{0}`...'. format(model_name)) print('') else: temp_json_name = tempfile.NamedTemporaryFile(mode='w').name try: factrueval2016_to_json(factrueval2016_devset_dir, temp_json_name, split_by_paragraphs) X, y = load_dataset_from_json(temp_json_name) finally: if os.path.isfile(temp_json_name): os.remove(temp_json_name) print('The FactRuEval-2016 data for training have been loaded...') print('Number of samples is {0}.'.format(len(y))) print('') if BERT_NER.PATH_TO_BERT is None: bert_hub_module_handle = 'https://tfhub.dev/google/bert_multi_cased_L-12_H-768_A-12/1' else: bert_hub_module_handle = None recognizer = BERT_NER(finetune_bert=bert_will_be_tuned, batch_size=batch_size, l2_reg=l2, bert_hub_module_handle=bert_hub_module_handle, lstm_units=lstm_layer_size, validation_fraction=0.25, max_epochs=max_epochs, patience=patience, gpu_memory_frac=gpu_memory_frac, verbose=True, random_seed=42, lr=3e-6 if bert_will_be_tuned else 1e-4, udpipe_lang='ru', use_nlp_features=use_lang_features, use_shapes=use_shapes) if collection3_dir is None: if n_max_samples > 0: train_index, test_index = split_dataset( y=y, test_part=recognizer.validation_fraction) X_train = np.array(X, dtype=object)[train_index] y_train = np.array(y, dtype=object)[train_index] X_val = np.array(X, dtype=object)[test_index] y_val = np.array(y, dtype=object)[test_index] del train_index, test_index index = sample_from_dataset(y=y_train, n=n_max_samples) recognizer.fit(X_train[index], y_train[index], validation_data=(X_val, y_val)) else: recognizer.fit(X, y) else: X_train, y_train = load_dataset_from_brat(collection3_dir, split_by_paragraphs=True) if not split_by_paragraphs: X_train, y_train = divide_dataset_by_sentences( X_train, y_train, sent_tokenize_func=ru_sent_tokenize) for sample_idx in range(len(y_train)): new_y_sample = dict() for ne_type in sorted(list(y_train[sample_idx].keys())): if ne_type == 'PER': new_y_sample['PERSON'] = y_train[sample_idx][ne_type] elif ne_type == 'LOC': new_y_sample['LOCATION'] = y_train[sample_idx][ne_type] else: new_y_sample[ne_type] = y_train[sample_idx][ne_type] y_train[sample_idx] = new_y_sample del new_y_sample print('The Collection3 data for training have been loaded...') print('Number of samples is {0}.'.format(len(y_train))) print('') if n_max_samples > 0: index = sample_from_dataset(y=y_train, n=n_max_samples) X_train = np.array(X_train, dtype=object)[index] y_train = np.array(y_train, dtype=object)[index] del index recognizer.fit(X_train, y_train, validation_data=(X, y)) with open(model_name, 'wb') as fp: pickle.dump(recognizer, fp) print('') print( 'The NER has been successfully fitted and saved into the file `{0}`...' .format(model_name)) print('') return recognizer