Example #1
0
 def test_sample_from_dataset_positive02(self):
     base_dir = os.path.join(os.path.dirname(__file__), 'testdata')
     _, y = load_dataset_from_json(
         os.path.join(base_dir, 'true_named_entities.json'))
     subset_index = sample_from_dataset(y=y,
                                        n=(len(y) + 1) * 2,
                                        n_restarts=10)
     self.assertIsInstance(subset_index, np.ndarray)
     self.assertEqual(len(y), len(subset_index))
     self.assertEqual(set(range(len(y))), set(subset_index.tolist()))
Example #2
0
 def test_calculate_prediction_quality(self):
     base_dir = os.path.join(os.path.dirname(__file__), 'testdata')
     X_true, y_true = load_dataset_from_json(os.path.join(base_dir, 'true_named_entities.json'))
     X_pred, y_pred = load_dataset_from_json(os.path.join(base_dir, 'predicted_named_entities.json'))
     self.assertEqual(X_true, X_pred)
     f1, precision, recall, quality_by_entities = calculate_prediction_quality(
         y_true, y_pred, ('LOCATION', 'PERSON', 'ORG')
     )
     self.assertIsInstance(f1, float)
     self.assertIsInstance(precision, float)
     self.assertIsInstance(recall, float)
     self.assertAlmostEqual(f1, 0.842037, places=3)
     self.assertAlmostEqual(precision, 0.908352, places=3)
     self.assertAlmostEqual(recall, 0.784746, places=3)
     self.assertIsInstance(quality_by_entities, dict)
     self.assertEqual({'LOCATION', 'PERSON', 'ORG'}, set(quality_by_entities.keys()))
     f1_macro = 0.0
     precision_macro = 0.0
     recall_macro = 0.0
     for ne_type in quality_by_entities:
         self.assertIsInstance(quality_by_entities[ne_type], tuple)
         self.assertEqual(len(quality_by_entities[ne_type]), 3)
         self.assertIsInstance(quality_by_entities[ne_type][0], float)
         self.assertIsInstance(quality_by_entities[ne_type][1], float)
         self.assertIsInstance(quality_by_entities[ne_type][2], float)
         self.assertLess(quality_by_entities[ne_type][0], 1.0)
         self.assertGreater(quality_by_entities[ne_type][0], 0.0)
         self.assertLess(quality_by_entities[ne_type][1], 1.0)
         self.assertGreater(quality_by_entities[ne_type][1], 0.0)
         self.assertLess(quality_by_entities[ne_type][2], 1.0)
         self.assertGreater(quality_by_entities[ne_type][2], 0.0)
         f1_macro += quality_by_entities[ne_type][0]
         precision_macro += quality_by_entities[ne_type][1]
         recall_macro += quality_by_entities[ne_type][2]
     f1_macro /= float(len(quality_by_entities))
     precision_macro /= float(len(quality_by_entities))
     recall_macro /= float(len(quality_by_entities))
     for ne_type in quality_by_entities:
         self.assertGreater(abs(quality_by_entities[ne_type][0] - f1_macro), 1e-4)
         self.assertGreater(abs(quality_by_entities[ne_type][1] - precision_macro), 1e-4)
         self.assertGreater(abs(quality_by_entities[ne_type][2] - recall_macro), 1e-4)
Example #3
0
 def test_sample_from_dataset_positive01(self):
     base_dir = os.path.join(os.path.dirname(__file__), 'testdata')
     _, y = load_dataset_from_json(
         os.path.join(base_dir, 'true_named_entities.json'))
     subset_index = sample_from_dataset(y=y, n=3, n_restarts=10)
     self.assertIsInstance(subset_index, np.ndarray)
     self.assertEqual(3, len(subset_index))
     self.assertGreater(len(y), len(subset_index))
     self.assertEqual(len(subset_index), len(set(subset_index.tolist())))
     true_set_of_classes = {'ORG', 'PERSON', 'LOCATION'}
     subset_of_classes = set()
     for idx in subset_index:
         subset_of_classes |= set(y[idx].keys())
     self.assertEqual(true_set_of_classes, subset_of_classes)
Example #4
0
 def test_positive01(self):
     base_dir = os.path.join(os.path.dirname(__file__), 'testdata')
     _, y = load_dataset_from_json(os.path.join(base_dir, 'true_named_entities.json'))
     train_index, test_index = split_dataset(y, 0.3, 10)
     self.assertIsInstance(train_index, np.ndarray)
     self.assertIsInstance(test_index, np.ndarray)
     self.assertEqual(len(y), len(train_index) + len(test_index))
     self.assertEqual(len(train_index), len(set(train_index.tolist())))
     self.assertEqual(len(test_index), len(set(test_index.tolist())))
     self.assertEqual(0, len(set(train_index.tolist()) & set(test_index.tolist())))
     true_set_of_classes = {'ORG', 'PERSON', 'LOCATION'}
     set_of_classes_for_training = set()
     for idx in train_index:
         set_of_classes_for_training |= set(y[idx].keys())
     set_of_classes_for_testing = set()
     for idx in test_index:
         set_of_classes_for_testing |= set(y[idx].keys())
     self.assertEqual(set_of_classes_for_training, set_of_classes_for_testing)
     self.assertEqual(true_set_of_classes, set_of_classes_for_training)
     self.assertEqual(true_set_of_classes, set_of_classes_for_testing)
Example #5
0
def train(factrueval2016_devset_dir: str,
          split_by_paragraphs: bool,
          elmo_will_be_tuned: bool,
          use_additional_features: bool,
          max_epochs: int,
          patience: int,
          batch_size: int,
          lr: float,
          l2: float,
          gpu_memory_frac: float,
          model_name: str,
          collection3_dir: Union[str, None] = None) -> ELMo_NER:
    if os.path.isfile(model_name):
        with open(model_name, 'rb') as fp:
            recognizer = pickle.load(fp)
        assert isinstance(recognizer, ELMo_NER)
        print('The NER has been successfully loaded from the file `{0}`...'.
              format(model_name))
        print('')
    else:
        temp_json_name = tempfile.NamedTemporaryFile(mode='w').name
        try:
            factrueval2016_to_json(factrueval2016_devset_dir, temp_json_name,
                                   split_by_paragraphs)
            X, y = load_dataset_from_json(temp_json_name)
        finally:
            if os.path.isfile(temp_json_name):
                os.remove(temp_json_name)
        print('The FactRuEval-2016 data for training have been loaded...')
        print('Number of samples is {0}.'.format(len(y)))
        print('')
        max_number_of_tokens = 0
        pipeline = create_udpipe_pipeline('ru')
        for cur in X:
            spacy_doc = pipeline(cur)
            n_tokens = 0
            for _ in spacy_doc:
                n_tokens += 1
            del spacy_doc
            if n_tokens > max_number_of_tokens:
                max_number_of_tokens = n_tokens
        del pipeline
        print('Maximal number of tokens is {0}.'.format(max_number_of_tokens))
        n_tokens = 2
        while n_tokens < max_number_of_tokens:
            n_tokens *= 2
        elmo_hub_module_handle = 'http://files.deeppavlov.ai/deeppavlov_data/elmo_ru-news_wmt11-16_1.5M_steps.tar.gz'
        recognizer = ELMo_NER(finetune_elmo=elmo_will_be_tuned,
                              batch_size=batch_size,
                              l2_reg=l2,
                              max_seq_length=n_tokens,
                              elmo_hub_module_handle=elmo_hub_module_handle,
                              validation_fraction=0.25,
                              max_epochs=max_epochs,
                              patience=patience,
                              gpu_memory_frac=gpu_memory_frac,
                              verbose=True,
                              random_seed=42,
                              lr=lr,
                              udpipe_lang='ru',
                              use_additional_features=use_additional_features)
        if collection3_dir is None:
            recognizer.fit(X, y)
        else:
            X_train, y_train = load_dataset_from_brat(collection3_dir,
                                                      split_by_paragraphs=True)
            if not split_by_paragraphs:
                X_train, y_train = divide_dataset_by_sentences(
                    X_train, y_train, sent_tokenize_func=ru_sent_tokenize)
            for sample_idx in range(len(y_train)):
                new_y_sample = dict()
                for ne_type in sorted(list(y_train[sample_idx].keys())):
                    if ne_type == 'PER':
                        new_y_sample['PERSON'] = y_train[sample_idx][ne_type]
                    elif ne_type == 'LOC':
                        new_y_sample['LOCATION'] = y_train[sample_idx][ne_type]
                    else:
                        new_y_sample[ne_type] = y_train[sample_idx][ne_type]
                y_train[sample_idx] = new_y_sample
                del new_y_sample
            print('The Collection3 data for training have been loaded...')
            print('Number of samples is {0}.'.format(len(y_train)))
            print('')
            recognizer.fit(X_train, y_train, validation_data=(X, y))
        with open(model_name, 'wb') as fp:
            pickle.dump(recognizer, fp)
        print('')
        print(
            'The NER has been successfully fitted and saved into the file `{0}`...'
            .format(model_name))
        print('')
    return recognizer
Example #6
0
def recognize(factrueval2016_testset_dir: str, split_by_paragraphs: bool,
              recognizer: ELMo_NER, results_dir: str):
    temp_json_name = tempfile.NamedTemporaryFile(mode='w').name
    try:
        factrueval2016_to_json(factrueval2016_testset_dir, temp_json_name,
                               split_by_paragraphs)
        with codecs.open(temp_json_name,
                         mode='r',
                         encoding='utf-8',
                         errors='ignore') as fp:
            data_for_testing = json.load(fp)
        _, true_entities = load_dataset_from_json(temp_json_name)
    finally:
        if os.path.isfile(temp_json_name):
            os.remove(temp_json_name)
    texts = []
    additional_info = []
    for cur_document in data_for_testing:
        base_name = os.path.join(results_dir,
                                 cur_document['base_name'] + '.task1')
        for cur_paragraph in cur_document['paragraph_bounds']:
            texts.append(
                cur_document['text'][cur_paragraph[0]:cur_paragraph[1]])
            additional_info.append((base_name, cur_paragraph))
    print('Data for final testing have been loaded...')
    print('Number of samples is {0}.'.format(len(true_entities)))
    print('')
    predicted_entities = recognizer.predict(texts)
    assert len(predicted_entities) == len(true_entities)
    f1, precision, recall, quality_by_entities = calculate_prediction_quality(
        true_entities, predicted_entities, recognizer.classes_list_)
    print('All entities:')
    print('    F1-score is {0:.2%}.'.format(f1))
    print('    Precision is {0:.2%}.'.format(precision))
    print('    Recall is {0:.2%}.'.format(recall))
    for ne_type in sorted(list(quality_by_entities.keys())):
        print('  {0}'.format(ne_type))
        print('    F1-score is {0:.2%}.'.format(
            quality_by_entities[ne_type][0]))
        print('    Precision is {0:.2%}.'.format(
            quality_by_entities[ne_type][1]))
        print('    Recall is {0:.2%}.'.format(quality_by_entities[ne_type][2]))
    results_for_factrueval_2016 = dict()
    for sample_idx, cur_result in enumerate(predicted_entities):
        base_name, paragraph_bounds = additional_info[sample_idx]
        for entity_type in cur_result:
            if entity_type == 'ORG':
                prepared_entity_type = 'org'
            elif entity_type == 'PERSON':
                prepared_entity_type = 'per'
            elif entity_type == 'LOCATION':
                prepared_entity_type = 'loc'
            else:
                prepared_entity_type = None
            if prepared_entity_type is None:
                raise ValueError(
                    '`{0}` is unknown entity type!'.format(entity_type))
            for entity_bounds in cur_result[entity_type]:
                postprocessed_entity = (prepared_entity_type,
                                        entity_bounds[0] + paragraph_bounds[0],
                                        entity_bounds[1] - entity_bounds[0])
                if base_name in results_for_factrueval_2016:
                    results_for_factrueval_2016[base_name].append(
                        postprocessed_entity)
                else:
                    results_for_factrueval_2016[base_name] = [
                        postprocessed_entity
                    ]
    for base_name in results_for_factrueval_2016:
        with codecs.open(base_name,
                         mode='w',
                         encoding='utf-8',
                         errors='ignore') as fp:
            for cur_entity in sorted(results_for_factrueval_2016[base_name],
                                     key=lambda it: (it[1], it[2], it[0])):
                fp.write('{0} {1} {2}\n'.format(cur_entity[0], cur_entity[1],
                                                cur_entity[2]))
def train(factrueval2016_devset_dir: str,
          split_by_paragraphs: bool,
          bert_will_be_tuned: bool,
          use_lang_features: bool,
          use_shapes: bool,
          lstm_layer_size: Union[int, None],
          l2: float,
          max_epochs: int,
          patience: int,
          batch_size: int,
          gpu_memory_frac: float,
          model_name: str,
          collection3_dir: Union[str, None] = None,
          n_max_samples: int = 0) -> BERT_NER:
    if os.path.isfile(model_name):
        with open(model_name, 'rb') as fp:
            recognizer = pickle.load(fp)
        assert isinstance(recognizer, BERT_NER)
        print('The NER has been successfully loaded from the file `{0}`...'.
              format(model_name))
        print('')
    else:
        temp_json_name = tempfile.NamedTemporaryFile(mode='w').name
        try:
            factrueval2016_to_json(factrueval2016_devset_dir, temp_json_name,
                                   split_by_paragraphs)
            X, y = load_dataset_from_json(temp_json_name)
        finally:
            if os.path.isfile(temp_json_name):
                os.remove(temp_json_name)
        print('The FactRuEval-2016 data for training have been loaded...')
        print('Number of samples is {0}.'.format(len(y)))
        print('')
        if BERT_NER.PATH_TO_BERT is None:
            bert_hub_module_handle = 'https://tfhub.dev/google/bert_multi_cased_L-12_H-768_A-12/1'
        else:
            bert_hub_module_handle = None
        recognizer = BERT_NER(finetune_bert=bert_will_be_tuned,
                              batch_size=batch_size,
                              l2_reg=l2,
                              bert_hub_module_handle=bert_hub_module_handle,
                              lstm_units=lstm_layer_size,
                              validation_fraction=0.25,
                              max_epochs=max_epochs,
                              patience=patience,
                              gpu_memory_frac=gpu_memory_frac,
                              verbose=True,
                              random_seed=42,
                              lr=3e-6 if bert_will_be_tuned else 1e-4,
                              udpipe_lang='ru',
                              use_nlp_features=use_lang_features,
                              use_shapes=use_shapes)
        if collection3_dir is None:
            if n_max_samples > 0:
                train_index, test_index = split_dataset(
                    y=y, test_part=recognizer.validation_fraction)
                X_train = np.array(X, dtype=object)[train_index]
                y_train = np.array(y, dtype=object)[train_index]
                X_val = np.array(X, dtype=object)[test_index]
                y_val = np.array(y, dtype=object)[test_index]
                del train_index, test_index
                index = sample_from_dataset(y=y_train, n=n_max_samples)
                recognizer.fit(X_train[index],
                               y_train[index],
                               validation_data=(X_val, y_val))
            else:
                recognizer.fit(X, y)
        else:
            X_train, y_train = load_dataset_from_brat(collection3_dir,
                                                      split_by_paragraphs=True)
            if not split_by_paragraphs:
                X_train, y_train = divide_dataset_by_sentences(
                    X_train, y_train, sent_tokenize_func=ru_sent_tokenize)
            for sample_idx in range(len(y_train)):
                new_y_sample = dict()
                for ne_type in sorted(list(y_train[sample_idx].keys())):
                    if ne_type == 'PER':
                        new_y_sample['PERSON'] = y_train[sample_idx][ne_type]
                    elif ne_type == 'LOC':
                        new_y_sample['LOCATION'] = y_train[sample_idx][ne_type]
                    else:
                        new_y_sample[ne_type] = y_train[sample_idx][ne_type]
                y_train[sample_idx] = new_y_sample
                del new_y_sample
            print('The Collection3 data for training have been loaded...')
            print('Number of samples is {0}.'.format(len(y_train)))
            print('')
            if n_max_samples > 0:
                index = sample_from_dataset(y=y_train, n=n_max_samples)
                X_train = np.array(X_train, dtype=object)[index]
                y_train = np.array(y_train, dtype=object)[index]
                del index
            recognizer.fit(X_train, y_train, validation_data=(X, y))
        with open(model_name, 'wb') as fp:
            pickle.dump(recognizer, fp)
        print('')
        print(
            'The NER has been successfully fitted and saved into the file `{0}`...'
            .format(model_name))
        print('')
    return recognizer