Example #1
0
    def frame_callback(vis, frame_idx):
        print("Frame idx", frame_idx)
        image = cv2.imread(seq_info["image_filenames"][frame_idx],
                           cv2.IMREAD_COLOR)

        vis.set_image(image.copy())

        if seq_info["detections"] is not None:
            detections = deep_sort_app.create_detections(
                seq_info["detections"], frame_idx)
            vis.draw_detections(detections)

        mask = results[:, 0].astype(np.int) == frame_idx
        track_ids = results[mask, 1].astype(np.int)
        boxes = results[mask, 2:6]
        vis.draw_groundtruth(track_ids, boxes)

        if show_false_alarms:
            groundtruth = seq_info["groundtruth"]
            mask = groundtruth[:, 0].astype(np.int) == frame_idx
            gt_boxes = groundtruth[mask, 2:6]
            for box in boxes:
                # NOTE(nwojke): This is not strictly correct, because we don't
                # solve the assignment problem here.
                min_iou_overlap = 0.5
                if iou(box, gt_boxes).max() < min_iou_overlap:
                    vis.viewer.color = 0, 0, 255
                    vis.viewer.thickness = 4
                    vis.viewer.rectangle(*box.astype(np.int))
Example #2
0
    def frame_callback(vis, frame_idx):
        print("Frame idx", frame_idx)
        image = cv2.imread(
            seq_info["image_filenames"][frame_idx], cv2.IMREAD_COLOR)

        vis.set_image(image.copy())

        if seq_info["detections"] is not None:
            detections = deep_sort_app.create_detections(
                seq_info["detections"], frame_idx)
            vis.draw_detections(detections)

        mask = results[:, 0].astype(np.int) == frame_idx
        track_ids = results[mask, 1].astype(np.int)
        boxes = results[mask, 2:6]
        vis.draw_groundtruth(track_ids, boxes)

        if show_false_alarms:
            groundtruth = seq_info["groundtruth"]
            mask = groundtruth[:, 0].astype(np.int) == frame_idx
            gt_boxes = groundtruth[mask, 2:6]
            for box in boxes:
                # NOTE(nwojke): This is not strictly correct, because we don't
                # solve the assignment problem here.
                min_iou_overlap = 0.5
                if iou(box, gt_boxes).max() < min_iou_overlap:
                    vis.viewer.color = 0, 0, 255
                    vis.viewer.thickness = 4
                    vis.viewer.rectangle(*box.astype(np.int))
    def frame_callback(vis, frame_idx):
        #프레임별로 처리
        print("Frame idx", frame_idx)
        image = cv2.imread(
            seq_info["image_filenames"][frame_idx], cv2.IMREAD_COLOR)

        vis.set_image(image.copy())

        if seq_info["detections"] is not None:
            detections = deep_sort_app.create_detections(
                seq_info["detections"], frame_idx)
            vis.draw_detections(detections)

        mask = results[:, 0].astype(np.int) == frame_idx
        track_ids = results[mask, 1].astype(np.int)         #해당 frame_id인 mask값들 중 [1]들인 id값 추출
        boxes = results[mask, 2:6]
        vis.draw_groundtruth(track_ids, boxes)

        # 발위치 10개 중 y값만 빼기
        h_file = os.path.dirname(result_file)  # result/text/

        with open(h_file + '/ID_h.txt', 'r') as f_hi:
            line_splits = [int(l.split(',')[1]) for l in f_hi.read().splitlines()[1:]]
        i = 0
        #print(line_splits)



        if show_false_alarms:
            groundtruth = seq_info["groundtruth"]
            mask = groundtruth[:, 0].astype(np.int) == frame_idx
            gt_boxes = groundtruth[mask, 2:6]
            for box in boxes:
                # NOTE(nwojke): This is not strictly correct, because we don't
                # solve the assignment problem here.
                min_iou_overlap = 0.5
                if iou(box, gt_boxes).max() < min_iou_overlap:
                    vis.viewer.color = 0, 0, 255
                    vis.viewer.thickness = 4
                    vis.viewer.rectangle(*box.astype(np.int))


                if IDnum != 0:                            # Tracking 하는 ID만 보여주고 발 표시 !!!!!!!


                    vis.viewer.circle(
                    box[0] + box[2] / 2, box[1] + box[3], 3)
    def process_next_frame(self, frame):
        """
        Track objects from specified detections
        :param frame: frame data + list of detections, map-like object with mandatory keys: image, detections
        :return: detections populated with object ids
        """
        if len(frame['detections']['rois']) == 0:
            return frame

        frame['detections']['rois'][:, 2] -= frame['detections']['rois'][:, 0]
        frame['detections']['rois'][:, 3] -= frame['detections']['rois'][:, 1]
        frame['detections']['features'] = self.__feature_extractor(
            frame['image'], frame['detections']['rois'])

        self.__tracker.predict()
        self.__tracker.update([
            Detection(frame['detections']['rois'][idx],
                      frame['detections']['scores'][idx],
                      frame['detections']['features'][idx])
            for idx, d in enumerate(frame['detections']['rois'])
        ])

        tracked_bbox = [
            track.to_tlwh() for track in self.__tracker.tracks
            if track.state == TrackState.Confirmed
        ]
        for idx_detection, detection in enumerate(frame['detections']['rois']):
            for idx_track, track in enumerate(tracked_bbox):
                if iou(
                        tracked_bbox[idx_track],
                        np.array(frame['detections']['rois'][idx_detection],
                                 dtype=np.float).reshape(1, 4))[0] >= 0.7:
                    frame['detections']['ids'][
                        idx_detection] = self.__tracker.tracks[
                            idx_track].track_id
        return frame
Example #5
0
    def draw_trackers(self, tracks, gts):
        #TODO make another option where you show any track which overlaps with the given object
        # this will require the groundtruth
        SHOW_OVERLAPPED = True
        if self.vis_method == "one-gt":
            if tracks == []:  # there's issues with zero lists
                return

            # for convenience we'll use self.gt_to_vis and self.tracks_to_vis
            # perhaps this isn't the way to do it. There will need to be a single gt index and a set of track indices
            # the logic is going to be pretty funky here
            gt_ids = gts[0]
            gt_boxs = gts[1]
            assert len(gt_ids) == len(gt_boxs)
            if (len(gt_ids) > 0 and self.gt_to_vis is None) or\
                    (self.gt_to_vis is not None and self.gt_to_vis not in gt_ids and len(gt_ids) > 0): # there are two cases to change the gt_ids, either it is unset or the one we were tracking is no longer present
                # the groundtruth should be in the form (List(ids), List(boxes))
                self.gt_to_vis = int(random.choice(gt_ids))
                self.tracks_to_vis = []

            if self.gt_to_vis is not None and len(gt_ids) > 0:
                # here we want to add any tracks that overlap at all and remove a
                # TODO run through all of the tracks and see if they overlap with the selceted gt
                # TODO determine which of the bboxs coresponds to the index that's being visualized
                # find the index of self.gt_to_vis in groundtruths[0]
                gt_box = gt_boxs[gt_ids.index(
                    self.gt_to_vis
                )]  # find the box which coresponds to the index we are visualizing
                track_boxes = np.asarray([t.to_tlwh() for t in tracks])
                track_indices = np.asarray([t.track_id for t in tracks])
                overlaps = iou(gt_box, track_boxes)
                # these should be tracks which overlap with the groundtruth track we've picked
                # TODO determine why additional tracks are being added
                new_tracks_to_vis = track_indices[np.nonzero(overlaps)[
                    0]]  # for some reason this return a tuple of arrays

                def union(a, b):
                    """ return the union of two lists """
                    return list(set(a) | set(b))

                self.tracks_to_vis = union(self.tracks_to_vis,
                                           new_tracks_to_vis)

            tracks_ = [
                t for t in tracks if t.track_id in self.tracks_to_vis
            ]  # I don't want to change `tracks` as it was passed by reference

            for track in tracks_:
                if not track.is_confirmed():  # or track.time_since_update > 0:
                    continue
                self.viewer.color = create_unique_color_uchar(track.track_id)
                if track.time_since_update > 0:
                    self.viewer.thickness = 2
                else:
                    self.viewer.thickness = 5
                self.viewer.rectangle(*track.to_tlwh().astype(np.int),
                                      label=str(track.track_id))

        elif self.vis_method == "one-track":  # I believe these tracks are sorted w.r.t. to seniority, so this should handle it niavely
            # check if the one we want to visualize
            confirmed_ids = [
                track.track_id for track in tracks if track.is_confirmed()
            ]

            if self.index_to_vis not in confirmed_ids and len(
                    confirmed_ids) > 0:  # the track must have died
                self.index_to_vis = random.choice(confirmed_ids)

            tracks = [t for t in tracks if t.track_id == self.index_to_vis
                      ]  # this is the cleanest way I found to get the item
            if len(tracks) == 0:
                return
            track = tracks[0]

            self.viewer.color = create_unique_color_uchar(track.track_id)
            if track.time_since_update > 0:
                self.viewer.thickness = 2
            else:
                self.viewer.thickness = 5
            self.viewer.rectangle(*track.to_tlwh().astype(np.int),
                                  label=str(track.track_id))

        elif self.vis_method == "show-all":
            for track in tracks:
                #HACK
                #if not track.is_confirmed():# or track.time_since_update > 0:
                #    continue
                self.viewer.color = create_unique_color_uchar(track.track_id)
                if track.time_since_update > 0:
                    self.viewer.thickness = 2
                else:
                    self.viewer.thickness = 5
                self.viewer.rectangle(*track.to_tlwh().astype(np.int),
                                      label=str(track.track_id))

            #if track.time_since_update > 0:
            #    self.viewer.color = (255, 255, 255)
            #    self.viewer.thickness = 2
            #    self.viewer.rectangle(
            #        *track.to_tlwh().astype(np.int), label=str(track.track_id))
            #self.viewer.gaussian(track.mean[:2], track.covariance[:2, :2],
            #                     label="%d" % track.track_id)
        else:
            raise ValueError(
                "self.vis_method should be `show all`, `one-track`, or `one-gt` but insted was {}"
                .format(self.vis_method))
Example #6
0
     gt_ids, gt_boxes = zip(
         *[(g['local_id'], _tlbr_to_tlwh(g['box']))
           for g in gt[frame_idx]]) if len(gt[frame_idx]) > 0 else ([],
                                                                    [])
     det_ids, det_boxes = zip(
         *[(d['local_id'], _tlbr_to_tlwh(d['location']))
           for d in context[frame_idx]['context']]) if len(
               context[frame_idx]['context']) > 0 else ([], [])
     candidates = np.asarray(det_boxes)
     gt_boxes = np.asarray(gt_boxes)
     costs = []
     for gt_box in gt_boxes:
         if len(candidates) == 0:
             costs.append([])
         else:
             cost = 1. - iou(gt_box, candidates)
             cost = list(
                 map(lambda x: np.nan
                     if x >= args.iou_cost_th else x, cost))
             costs.append(cost)
     acc.update(gt_ids, det_ids, costs)
 # 集計
 df_sub = mh.compute(acc, metrics=metrics, name=video_name)
 if df is None:
     df = df_sub
 else:
     df = pd.concat([df, df_sub])
 # motmetric出力
 pkl_filepath = os.path.join(args.save_root, video_name, 'motacc.pkl')
 with open(pkl_filepath, 'wb') as f:
     pickle.dump(acc, f)