def test_base_model(): base_config = Bunch(config) base_model = base.BaseModel(base_config) base_model.init_saver() base.BaseModel.gaussian_likelihood(1.) create_dirs([base_config.summary_dir, base_config.checkpoint_dir]) init = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init) logger = Logger(sess, base_config) logger.summarize(0, summaries_dict={})
def test_deepar_init(): config = process_config(config_path) model = deeparsys.DeepARSysModel(config) model.delete_checkpoints() create_dirs([ config.summary_dir, config.checkpoint_dir, config.plots_dir, config.output_dir ]) assert os.path.exists(config.summary_dir) assert os.path.exists(config.output_dir) assert os.path.exists(config.checkpoint_dir) data = data_generator.DataGenerator(config) init = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init) logger = Logger(sess, config) trainer = deeparsys.DeepARSysTrainer(sess, model, data, config, logger) trainer.eval_step() trainer.train_step() model.load(sess) trainer.train() trainer.eval_step()
def test_deepar_init(): config = process_config(config_path) create_dirs([config.summary_dir, config.checkpoint_dir]) model = deepar.DeepARModel(config) # model.delete_checkpoints() data = data_generator.DataGenerator(config) init = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init) logger = Logger(sess, config) trainer = deepar.DeepARTrainer(sess, model, data, config, logger) trainer.train()
except: print("missing or invalid arguments") exit(0) model = deepar.DeepARModel(config) data = data_generator.DataGenerator(config) create_dirs([ config.summary_dir, config.checkpoint_dir, config.plots_dir, config.output_dir ]) init = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init) logger = Logger(sess, config) trainer = deepar.DeepARTrainer(sess, model, data, config, logger) if trainer.config.from_scratch: model.delete_checkpoints() model.load(sess) trainer.train(verbose=True) samples = trainer.sample_on_test() # Saving output array np.save(os.path.join(config.output_dir, 'pred_array.npy'), np.array(samples)) print('prediction sample of shape {} saved'.format( np.array(samples).shape))