def __init__(self, exhaustiveness=10, detect_pockets=False): """Builds model.""" self.base_dir = tempfile.mkdtemp() print("About to download trained model.") call(( "wget -nv -c http://deepchem.io.s3-website-us-west-1.amazonaws.com/trained_models/random_full_DNN.tar.gz" ).split()) call(("tar -zxvf random_full_DNN.tar.gz").split()) call(("mv random_full_DNN %s" % (self.base_dir)).split()) self.model_dir = os.path.join(self.base_dir, "random_full_DNN") # Fit model on dataset pdbbind_tasks = ["-logKd/Ki"] n_features = 2052 model = TensorflowMultiTaskRegressor(len(pdbbind_tasks), n_features, logdir=self.model_dir, dropouts=[.25], learning_rate=0.0003, weight_init_stddevs=[.1], batch_size=64) model.reload() self.pose_scorer = GridPoseScorer(model, feat="grid") self.pose_generator = VinaPoseGenerator(exhaustiveness=exhaustiveness, detect_pockets=detect_pockets)
class VinaGridRFDocker(Docker): """Vina pose-generation, RF-models on grid-featurization of complexes.""" def __init__(self, exhaustiveness=10, detect_pockets=False): """Builds model.""" self.base_dir = tempfile.mkdtemp() logger.info("About to download trained model.") call(( "wget -nv -c http://deepchem.io.s3-website-us-west-1.amazonaws.com/trained_models/random_full_RF.tar.gz" ).split()) call(("tar -zxvf random_full_RF.tar.gz").split()) call(("mv random_full_RF %s" % (self.base_dir)).split()) self.model_dir = os.path.join(self.base_dir, "random_full_RF") # Fit model on dataset model = SklearnModel(model_dir=self.model_dir) model.reload() self.pose_scorer = GridPoseScorer(model, feat="grid") self.pose_generator = VinaPoseGenerator(exhaustiveness=exhaustiveness, detect_pockets=detect_pockets) def dock(self, protein_file, ligand_file, centroid=None, box_dims=None, dry_run=False): """Docks using Vina and RF.""" protein_docked, ligand_docked = self.pose_generator.generate_poses( protein_file, ligand_file, centroid, box_dims, dry_run) if not dry_run: score = self.pose_scorer.score(protein_docked, ligand_docked) else: score = np.zeros((1, )) return (score, (protein_docked, ligand_docked))
def __init__(self, exhaustiveness=10, detect_pockets=False): """Builds model.""" self.base_dir = tempfile.mkdtemp() print("About to download trained model.") call(( "wget -c http://deepchem.io.s3-website-us-west-1.amazonaws.com/trained_models/random_full_DNN.tar.gz" ).split()) call(("tar -zxvf random_full_DNN.tar.gz").split()) call(("mv random_full_DNN %s" % (self.base_dir)).split()) self.model_dir = os.path.join(self.base_dir, "random_full_DNN") # Fit model on dataset pdbbind_tasks = ["-logKd/Ki"] n_features = 2052 model = TensorflowMultiTaskRegressor( len(pdbbind_tasks), n_features, logdir=self.model_dir, dropouts=[.25], learning_rate=0.0003, weight_init_stddevs=[.1], batch_size=64) model.reload() self.pose_scorer = GridPoseScorer(model, feat="grid") self.pose_generator = VinaPoseGenerator( exhaustiveness=exhaustiveness, detect_pockets=detect_pockets)
class VinaGridDNNDocker(object): """Vina pose-generation, DNN-models on grid-featurization of complexes.""" def __init__(self, exhaustiveness=10, detect_pockets=False): """Builds model.""" self.base_dir = tempfile.mkdtemp() print("About to download trained model.") call(("wget -c http://deepchem.io.s3-website-us-west-1.amazonaws.com/trained_models/random_full_DNN.tar.gz").split()) call(("tar -zxvf random_full_DNN.tar.gz").split()) call(("mv random_full_DNN %s" % (self.base_dir)).split()) self.model_dir = os.path.join(self.base_dir, "random_full_DNN") # Fit model on dataset pdbbind_tasks = ["-logKd/Ki"] n_features = 2052 model = TensorflowMultiTaskRegressor( len(pdbbind_tasks), n_features, logdir=self.model_dir, dropouts=[.25], learning_rate=0.0003, weight_init_stddevs=[.1], batch_size=64) model.reload() self.pose_scorer = GridPoseScorer(model, feat="grid") self.pose_generator = VinaPoseGenerator( exhaustiveness=exhaustiveness, detect_pockets=detect_pockets) def dock(self, protein_file, ligand_file): """Docks using Vina and DNNs.""" protein_docked, ligand_docked = self.pose_generator.generate_poses( protein_file, ligand_file) score = self.pose_scorer.score(protein_docked, ligand_docked) return (score, (protein_docked, ligand_docked))
class VinaGridRFDocker(Docker): """Vina pose-generation, RF-models on grid-featurization of complexes.""" def __init__(self, exhaustiveness=10, detect_pockets=False): """Builds model.""" self.base_dir = tempfile.mkdtemp() print("About to download trained model.") call(("wget -c http://deepchem.io.s3-website-us-west-1.amazonaws.com/trained_models/random_full_RF.tar.gz").split()) call(("tar -zxvf random_full_RF.tar.gz").split()) call(("mv random_full_RF %s" % (self.base_dir)).split()) self.model_dir = os.path.join(self.base_dir, "random_full_RF") # Fit model on dataset model = SklearnModel(model_dir=self.model_dir) model.reload() self.pose_scorer = GridPoseScorer(model, feat="grid") self.pose_generator = VinaPoseGenerator( exhaustiveness=exhaustiveness, detect_pockets=detect_pockets) def dock(self, protein_file, ligand_file): """Docks using Vina and RF.""" protein_docked, ligand_docked = self.pose_generator.generate_poses( protein_file, ligand_file) score = self.pose_scorer.score(protein_docked, ligand_docked) return (score, (protein_docked, ligand_docked))
def __init__(self, exhaustiveness=10, detect_pockets=False): """Builds model.""" self.base_dir = tempfile.mkdtemp() logger.info("About to download trained model.") call(( "wget -nv -c http://deepchem.io.s3-website-us-west-1.amazonaws.com/trained_models/random_full_RF.tar.gz" ).split()) call(("tar -zxvf random_full_RF.tar.gz").split()) call(("mv random_full_RF %s" % (self.base_dir)).split()) self.model_dir = os.path.join(self.base_dir, "random_full_RF") # Fit model on dataset model = SklearnModel(model_dir=self.model_dir) model.reload() self.pose_scorer = GridPoseScorer(model, feat="grid") self.pose_generator = VinaPoseGenerator(exhaustiveness=exhaustiveness, detect_pockets=detect_pockets)
def __init__(self, exhaustiveness=10, detect_pockets=False): """Builds model.""" self.base_dir = tempfile.mkdtemp() print("About to download trained model.") call(("wget -c http://deepchem.io.s3-website-us-west-1.amazonaws.com/trained_models/random_full_RF.tar.gz").split()) call(("tar -zxvf random_full_RF.tar.gz").split()) call(("mv random_full_RF %s" % (self.base_dir)).split()) self.model_dir = os.path.join(self.base_dir, "random_full_RF") # Fit model on dataset model = SklearnModel(model_dir=self.model_dir) model.reload() self.pose_scorer = GridPoseScorer(model, feat="grid") self.pose_generator = VinaPoseGenerator( exhaustiveness=exhaustiveness, detect_pockets=detect_pockets)
class VinaGridDNNDocker(object): """Vina pose-generation, DNN-models on grid-featurization of complexes.""" def __init__(self, exhaustiveness=10, detect_pockets=False): """Builds model.""" self.base_dir = tempfile.mkdtemp() print("About to download trained model.") call(( "wget -nv -c http://deepchem.io.s3-website-us-west-1.amazonaws.com/trained_models/random_full_DNN.tar.gz" ).split()) call(("tar -zxvf random_full_DNN.tar.gz").split()) call(("mv random_full_DNN %s" % (self.base_dir)).split()) self.model_dir = os.path.join(self.base_dir, "random_full_DNN") # Fit model on dataset pdbbind_tasks = ["-logKd/Ki"] n_features = 2052 model = TensorflowMultiTaskRegressor(len(pdbbind_tasks), n_features, logdir=self.model_dir, dropouts=[.25], learning_rate=0.0003, weight_init_stddevs=[.1], batch_size=64) model.reload() self.pose_scorer = GridPoseScorer(model, feat="grid") self.pose_generator = VinaPoseGenerator(exhaustiveness=exhaustiveness, detect_pockets=detect_pockets) def dock(self, protein_file, ligand_file, centroid=None, box_dims=None, dry_run=False): """Docks using Vina and DNNs.""" protein_docked, ligand_docked = self.pose_generator.generate_poses( protein_file, ligand_file, centroid, box_dims, dry_run) if not dry_run: score = self.pose_scorer.score(protein_docked, ligand_docked) else: score = np.zeros((1, )) return (score, (protein_docked, ligand_docked))